ZOJ2418 Matrix

本文探讨了一个特定的矩阵操作问题,即通过行位移操作来优化列和的最大值。使用深度优先搜索(DFS)策略来枚举行间关系,实现了一个高效的算法解决方案。
Matrix

Time Limit: 2 Seconds      Memory Limit: 65536 KB

Given an n*n matrix A, whose entries Ai,j are integer numbers ( 0 <= i < n, 0 <= j < n ). An operation SHIFT at row i ( 0 <= i < n ) will move the integers in the row one position right, and the rightmost integer will wrap around to the leftmost column.

You can do the SHIFT operation at arbitrary row, and as many times as you like. Your task is to minimize


Input

The input consists of several test cases. The first line of each test case contains an integer n. Each of the following n lines contains n integers, indicating the matrix A. The input is terminated by a single line with an integer -1. You may assume that 1 <= n <= 7 and |Ai,j| < 104.


Output

For each test case, print a line containing the minimum value of the maximum of column sums.


Sample Input

2
4 6
3 7
3
1 2 3
4 5 6
7 8 9
-1


Sample Output

11
15


Source: Asia 2004, Shanghai (Mainland China), Preliminary



————————————————————————————————————

题目的意思是每一行可以任意移动求每列和的最大值的最小值

暴力DFS枚举行与行之间关系,可以开一个数组A保存每一行第一个数位置效率n^(n-1),求最小n^2 ,总共n^(n+1)


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <set>
#include <stack>
#include <map>
#include <functional>
#include <bitset>
#include <string>

using namespace std;

#define LL long long
#define INF 0x3f3f3f3f

int a[10][10];
int ans[10];
int n,mn;

void dfs(int x)
{
    if(x==n)
    {
        int mx=-1;
        for(int i=0; i<n; i++)
        {
            int ans1=0;
            for(int j=0; j<n; j++)
            {
                int pos=ans[j]+i;
                if(pos>=n) pos-=n;
                ans1+=a[j][pos];
            }
            mx=max(ans1,mx);

        }
        mn=min(mn,mx);
        return;
    }
    for(int i=0; i<n; i++)
    {
        ans[x]=i;
        dfs(x+1);
    }
}

int main()
{
    while(~scanf("%d",&n))
    {
        if(n==-1)
            break;
        for(int i=0; i<n; i++)
            for(int j=0; j<n; j++)
                scanf("%d",&a[i][j]);
        mn=INF;
        ans[0]=0;
        dfs(1);
        printf("%d\n",mn);
    }

    return 0;
}



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值