一、理论
卷积应用-图像边缘提取
- 边缘是什么 – 是像素值发生跃迁的地方,是图像的显著特征之一,在图像特征提取、对象检测、模式识别等方面都有重要的作用
- 如何捕捉/提取边缘 – 对图像求它的一阶导数delta = f(x) – f(x-1), delta越大,说明像素在X方向变化越大,边缘信号越强。
二、Sobel算子
- 是离散微分算子(discrete differentiation operator),用来计算图像灰度的近似梯度
- Soble算子功能集合高斯平滑和微分求导,又被称为一阶微分算子,求导算子,在水平和垂直两个方向上求导,得到图像X方法与Y方向梯度图像。
求取导数的近似值,kernel=3时不时很准确,OpenCV使用改进版本Scharr函数,算子如下:

三、相关API
1.Sobel
cv::Sobel (
InputArray Src // 输入图像
OutputArray dst// 输出图像,大小与输入图像一致
int depth // 输出图像深度.
Int dx. // X方向,几阶导数
int dy // Y方向,几阶导数.
int ksize, SOBEL算子kernel大小,必须是1、3、5、7、
double scale = 1
double delta = 0
int borderType = BORDER_DEFAULT
)

2.Scharr
cv::Scharr (
InputArray Src // 输入图像
OutputArray dst// 输出图像,大小与输入图像一致
int depth // 输出图像深度.
Int dx. // X方向,几阶导数
int dy // Y方向,几阶导数.
double scale = 1
double delta = 0
int borderType = BORDER_DEFAULT
)
3.其他
GaussianBlur( src, dst, Size(3,3), 0, 0, BORDER_DEFAULT );
cvtColor( src, gray, COLOR_RGB2GRAY );
addWeighted( A, 0.5,B, 0.5, 0, AB);
convertScaleAbs(A, B)// 计算图像A的像素绝对值,输出到图像B
四、综合例程
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
src = imread("D:/vcprojects/images/test.png");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
char INPUT_TITLE[] = "input image";
char OUTPUT_TITLE[] = "sobel-demo";
namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);
namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);
imshow(INPUT_TITLE, src);
Mat gray_src;
GaussianBlur(src, dst, Size(3, 3), 0, 0);
cvtColor(dst, gray_src, CV_BGR2GRAY);
imshow("gray image", gray_src);
Mat xgrad, ygrad;
Scharr(gray_src, xgrad, CV_16S, 1, 0);
Scharr(gray_src, ygrad, CV_16S, 0, 1);
// Sobel(gray_src, xgrad, CV_16S, 1, 0, 3);
// Sobel(gray_src, ygrad, CV_16S, 0, 1, 3);
convertScaleAbs(xgrad, xgrad);
convertScaleAbs(ygrad, ygrad);
imshow("xgrad", xgrad);
imshow("ygrad", ygrad);
Mat xygrad = Mat(xgrad.size(), xgrad.type());
printf("type : %d\n", xgrad.type());
int width = xgrad.cols;
int height = ygrad.rows;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
int xg = xgrad.at<uchar>(row, col);
int yg = ygrad.at<uchar>(row, col);
int xy = xg + yg;
xygrad.at<uchar>(row, col) = saturate_cast<uchar>(xy);
}
}
//addWeighted(xgrad, 0.5, ygrad, 0.5, 0, xygrad);
imshow(OUTPUT_TITLE, xygrad);
waitKey(0);
return 0;
}