Sobel衍生物
目标
- 使用OpenCV函数cv :: Sobel来计算图像中的衍生物。
- 使用OpenCV函数cv :: Scharr计算3 \ cdot 3的内核的更准确的导数3⋅3
理论
注意
下面的解释属于Bradski和Kaehler 的“ 学习OpenCV ”一书。
- 在最后两个教程中,我们已经看到了卷积的应用例子。最重要的卷积之一是计算图像中的导数(或与其近似)。
- 为什么在图像中派生物的演算可能很重要?让我们想象一下,我们想要检测图像中存在的边。例如:
你可以很容易地注意到,在边缘,像素强度以臭名昭着的方式发生变化。表达变化的一个好方法是使用衍生工具。梯度的高变化表示图像的重大变化。
- 为了更加图形化,我们假设我们有一个1D图像。在下面的图中,边缘以强度显示为“跳跃”
- 如果我们采用一阶导数(实际上,这里显示为最大值),边缘“跳”可以更容易看到