Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
链接处有该问题的详细分析:
https://www.quora.com/Given-n-how-many-structurally-unique-BSTs-binary-search-trees-that-store-values-1-to-n-are-there
public class Solution {
public int numTrees(int n) {
if ( n == 0) {
return 0;
}
int[] dp = new int[n+1];
dp[0] = 1;
int sum = 0;
for (int i = 1; i < n + 1; ++i) {
for (int j = 0; j < i; ++j) {
dp[i] += dp[j] * dp[i- j - 1];
}
}
return dp[n];
}
}