本文介绍了MCP大模型上下文协议的的概念,并对比了MCP协议和function call的区别,同时用python sdk为例介绍了mcp的使用方式。
1. 什么是MCP?
2025年,Anthropic提出了MCP协议。MCP全称为Model Context Protocol,翻译过来是大模型上下文协议。这个协议的主要为AI大模型和外部工具(比如让AI去查询信息,或者让AI操作本地文件)之间的交互提供了一个统一的处理协议。我们常用的USB TypeC接口(USB-C)统一了USB接口的样式,MCP协议就好比AI大模型中的USB-C,统一了大模型与工具的对接方式。
MCP协议采用了C/S架构,也就是服务端、客户端架构,能支持在客户端设备上调用远程Server提供的服务,同时也支持stdio流式传输模式,也就是在客户端本地启动mcp服务端。只需要在配置文件中新增MCP服务端,就能用上这个MCP服务器提供的各种工具,大大提高了大模型使用外部工具的便捷性。

MCP是开源协议,能让所有AI厂商、AI工具都将MCP集成到自己的客户端中,从而扩大MCP的可用面。毕竟只有用的人越多,协议才能不断发展,不断变得更好。
2. 了解function call
在MCP没有出来之前,我们的AI Agent开发如果想调用外部工具需要针对不同的AI大模型SDK编写不同的代码,其中最为常用的是openai提供的function call的处理逻辑。
本小节参考博客:
- 深入探讨Function Calling:实现外部函数调用的工作原理;
- 来自OpenAI官网的Function calling介绍与最佳实践
2.1. function call demo
2.1.1. 配置工具,AI提供参数
当我们调用 OpenAI Chat Completions 接口时,可以通过tools参数传入可供使用的外部工具。这个工具的调用中就包含了工具的作用,工具需要传入的参数,以及参数的释义。其中tool_choice字段设置为auto代表让大模型自动选择tools,设置为none时不会调用外部工具。
对应的python openai代码如下,我们将tools部分放入一个包含dict的list,作为create函数的tools参数即可。同时tool_choice传入auto代表自动选择工具。这里我用了硅基流动提供的Qwen2.5模型作为演示,运行下面这个代码需要修改api_key为正确值。
运行程序,发出请求后,大模型就会根据用户提出的问题和提供的tools,来为这个tools编写需要提供的参数。此时content会是空,不会输出内容,tool_calls中会包含调用的工具和参数。
对应如下json格式响应,包含了我们的参数
2.1.2. 调用工具并让AI二次处理
随后,我们就可以根据这个大模型返回的参数来调用我们的函数,并得到函数的返回结果,再次与大模型进行对话。此时需要按下面的方式维护对话上下文,首先需要将第一次请求AI返回的结果插入到上下文中("role": "assistant"的json字符串),然后再插入工具调用的数据,格式如下:
其中content代表工具调用的结果(字符串形式,内容可以是json),并且需要用tool_call_id来标识这是哪一个工具调用的请求,必须要和"role": "assistant"响应中的id对应。
二次AI交互对应python代码如下,在上文提供的python代码之后追加

最低0.47元/天 解锁文章
512

被折叠的 条评论
为什么被折叠?



