代码水平低,但是要基于pytorch做深度学习,应该如何学习呢?一文给你讲透彻了

PyTorch是一个灵活易用的深度学习库,以其动态计算图和直观API受到青睐。本文将介绍PyTorch的概述、与Numpy的对比、与其他深度学习库的比较,并通过实例展示如何在PyTorch中构建神经网络,解决图像识别问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch是一个非常有可能改变深度学习领域前景的Python库。我尝试使用了几星期PyTorch,然后被它的易用性所震惊,在我使用过的各种深度学习库中,PyTorch是最灵活、最容易掌握的。


在本文中,我们将讲解如何入门PyTorch,包括基础知识和案例研究。还将分别在numpy和PyTorch中从零开始构建神经网络,以了解它们在实践中的相似处与区别。
目录

  • ·PyTorch的概述
  • ·深入研究技术细节
  • ·在Numpy和PyTorch中分别构建神经网络并进行对比
  • ·与其它深度学习库比较
  • ·案例研究——用PyTorch解决图像识别问题

粉丝福利:领完再看!迪迦给大家准备的250G人工智能学习资料礼包内含:两大Pytorch、TensorFlow实战框架视频、图像识别、OpenCV、计算机视觉、深度学习与神经网络等等等视频、代码、PPT以及深度学习书籍

只需要你点个关注,然后扫码添加助手小姐姐VX即可无套路领取!

  扫码添加即可

PyTorch的概述


PyTorch的创始人说过他们创作的一个准则——他们想成为当务之急。这意味着我们可以立即执行计算。这正好符合Python的编程方法,不需要完成全部代码才能运行,可以轻松的运行部分代码并实时检查。对于我来说把它作为一个神经网络调试器是一件非常幸福的事。
PyTorch是一个基于Python的库,用来提供一个具有灵活性的深度学习开发平台。PyTorch的工作流程非常接近Python的科学计算库——numpy。
现在你可能会问,为什么我们要用PyTorch来建立深度学习模型呢?我可以列出三件有助于回答的事情:
·易于使用的API—它就像Python一样简单。
·Python的支持—如上所述,PyTorch可以顺利地与Python数据科学栈集成。它非常类似于numpy,甚至注意不到它们的差别。
·动态计算图—取代了具有特定功能的预定义图形,PyTorch为我们提供了一个框架,以便可以在运行时构建计算图,甚至在运行时更改它们。在不知道创建神经网络需要多少内存的情况下这非常有价值。
PyTorch的其他一些优点还包括:多gpu支持,自定义数据加载器和简化的预处理器。
自从2016年1月发布以来,许多研究人员将其作为一种“go-to”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值