线性回归——最小二乘法(一)

本文详细讲解了如何使用最小二乘法求解单变量线性回归问题,包括数学推导和实际应用。通过实例展示了如何找到最佳拟合直线。

目标:本文详细将讲解单变量线性回归并写出使用最小二乘法(least squares method)来求线性回归损失函数最优解的完整过程,首先推导出最小二乘法,后用最小二乘法对一个简单数据集进行线性回归拟合

线性回归

  线性回归假设数据集中特征与结果存在着线性关系;

  等式:y = mx + c

  y为结果,x为特征,m为系数,c为误差 在数学中m为梯度c为截距

  这个等式为我们假设的,我们需要找到m、c使得mx+c得到的结果与真实的y误差最小,这里使用平方差来衡量估计值与真实值得误差(如果只用差值就可能会存在负数); 用于计算真实值与预测值的误差的函数称为:平方损失函数(squard loss function);这里用L表示损失函数,所以有:

整个数据集上的平均损失为:

我们要求得最匹配的m与c使得L最小;数学表达式可以表示为:

最小二乘法用于求目标函数的最优值,它通过最小化误差的平方和寻找匹配项所以又称为:最小平方法;这里将用最小二乘法用于求得线性回归的最优解;

最小二乘法

  为了方便讲清楚最小二乘法推导过程这里使用,数据集有1…N个数据组成,每个数据由、构成,x表示特征,y为结果;这里将线性回归模型定义为:

平均损失函数定义有:

要求得L的最小,其关于c与m的偏导数定为0,所以求偏导数,得出后让导数等于0,并对c与m求解便能得到最小的L此时的c与m便是最匹配该模型的;

关于c偏导数:

因为求得是关于c的偏导数,因此把L的等式中不包含c的项去掉得:

整理式子把不包含下标n的往累加和外移得到:

对c求偏导数得:

关于m的偏导数:

求关于m的偏导数,因此把L等式中不包含项去掉得:

整理式子把不包含下标n的往累加和外移得到:

对m求偏导数得:

令关于c的偏导数等于0,求解:

从上求解得到的值可以看出,上面式子中存在两个平均值,因此该等式也可以改写成:

令关于m的偏导数等于0,求解:
  关于m的偏导数依赖于c,又因为已经求得了关于c偏导数的解,因此把求关于c偏导数的解代数关于m的偏导数式子得:

合并含有m的项化简:

求解:

 

为了简化式子,再定义出:

示例:

这里使用上面得到的最小二乘法公式对以下数据集进行线性拟合:

最后得出当前线性函数为:

y = 1.5307x - 0.23

计算出每个节点的预测值:

y1 = 1.5307 * 2 - 0.23 = 2.83
y2 = 1.5307 * 6 - 0.23 = 8.9542
y3 = 1.5307 * 9 - 0.23 = 13.5463
y4 = 1.5307 * 13- 0.23 = 19.6691

拟合结果:

 

线性回归——最小二乘法(一)

 

 

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值