Day 45 D. Buying Shovels

该博客主要讨论了一个数学问题,即如何确定购买特定数量铲子所需的最少包裹数。问题中,商店提供不同类型的铲子包裹,每种类型包含一定数量的铲子。博主通过编程解决了一个输入案例,例如当需要87把铲子且有81种包裹类型时,答案是8。博主还提供了一个解决方案,用于找出当总铲子数和包裹类型数给定时的最小包裹数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem
Polycarp wants to buy exactly n shovels. The shop sells packages with shovels. The store has k types of packages: the package of the i-th type consists of exactly i shovels (1≤i≤k). The store has an infinite number of packages of each type.

Polycarp wants to choose one type of packages and then buy several (one or more) packages of this type. What is the smallest number of packages Polycarp will have to buy to get exactly n shovels?

For example, if n=8 and k=7, then Polycarp will buy 2 packages of 4 shovels.

Help Polycarp find the minimum number of packages that he needs to buy, given that he:

will buy exactly n shovels in total;
the sizes of all packages he will buy are all the same and the number of shovels in each package is an integer from 1 to k, inclusive.

Input
The first line contains an integer t (1≤t≤100) — the number of test cases in the input. Then, t test cases follow, one per line.

Each test case consists of two positive integers n (1≤n≤109) and k (1≤k≤109) — the number of shovels and the number of types of packages.

Output
Print t answers to the test cases. Each answer is a positive integer — the minimum number of packages.

Example
input
5
8 7
8 1
6 10
999999733 999999732
999999733 999999733
output
8
1
999999733
1

Note
The answer to the first test case was explained in the statement.

In the second test case, there is only one way to buy 8 shovels — 8 packages of one shovel.

In the third test case, you need to buy a 1 package of 6 shovels.

#include<iostream>
#include<algorithm>
#include<string.h>
#include<vector>
#include<stdio.h>
#include<limits.h>
#include<cmath>
#include<set>
#include<map>
#define ll long long
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
int main() 
{
    int t;
    cin >> t;
    while (t--) 
    {
        int n, k;
        cin >> n >> k;
        if (n <= k) 
        {
            cout << 1 << endl;
        }
        else 
        {
            bool f = 0;
            ll ans = INF;
            for (ll i = 1; i * i <= n; i++) 
            {
                if (n % i == 0) 
                {
                    if (n / i <= k) 
                    {
                        f = 1;
                        ans = i;
                        break;
                    }
                    else 
                    {
                        if (i <= k) 
                        {
                            ans = min(ans, n / i);
                        }
                    }
                }
            }
            cout << ans << endl;
        }
    }
    return 0;
}
min Z = 154 * ∑(i=1 to 10) ∑(j=1 to 5) C_ij * X_ij 约束条件: 1. 每个卸点j的产量要求: ∑(i=1 to 10) X_ij >= d_j / 154, j=1,2,3,4,5 2. 时间约束: 5 * K_ij <= (15/7)*C_ij + 8, ∀i,j 3. 质量约束(仅矿石卸点j=1,2,5): 0.285 * ∑(i) X_i1 <= ∑(i) X_i1 * e_i <= 0.305 * ∑(i) X_i1 (对于j=1) 0.285 * ∑(i) X_i2 <= ∑(i) X_i2 * e_i <= 0.305 * ∑(i) X_i2 (对于j=2) 0.285 * ∑(i) X_i5 <= ∑(i) X_i5 * e_i <= 0.305 * ∑(i) X_i5 (对于j=5) 4. 铲位数量约束: ∑(i=1 to 10) a_i <= 7 5. 物料约束(铲位i的矿石和岩石总量约束): ∑(j in {1,2,5}) X_ij <= D_i^{(1)} / 154 (矿石卸点) ∑(j in {3,4}) X_ij <= D_i^{(2)} / 154 (岩石卸点) 6. 铲位使用约束(如果铲位i没有电铲,则不能运输): ∑(j=1 to 5) X_ij <= (D_i^{(1)} + D_i^{(2)}) / 154 * a_i ∑(i=1 to 10) ∑(j=1 to 5) K_ij<=20 K_ij=((15/7)*C_ij + 8)*X_ij/475 7. 变量类型: a_i ∈ {0,1} (二进制变量) X_ij >= 0 (连续变量) 数据: C_ij 矩阵(10个铲位i,5个卸点j): j=1 j=2 j=3 j=4 j=5 i=1: 5.26, 1.90, 5.89, 0.64, 4.42 i=2: 5.19, 0.99, 5.61, 1.76, 3.86 i=3: 4.21, 1.90, 5.61, 1.27, 3.72 i=4: 4.00, 1.13, 4.56, 1.83, 3.16 i=5: 2.95, 1.27, 3.51, 2.74, 2.25 i=6: 2.74, 2.25, 3.65, 2.60, 2.81 i=7: 2.46, 1.48, 2.46, 4.21, 0.78 i=8: 1.90, 2.04, 2.46, 3.72, 1.62 i=9: 0.64, 3.09, 1.06, 5.05, 1.27 i=10:1.27, 3.51, 0.57, 6.10, 0.50 e_i(铁含量,以小数表示): i=1:0.30, i=2:0.28, i=3:0.29, i=4:0.32, i=5:0.31, i=6:0.33, i=7:0.32, i=8:0.31, i=9:0.33, i=10:0.31 D_i^{(1)}(矿石总量): i=1:9500, i=2:10500, i=3:10000, i=4:10500, i=5:11000, i=6:12500, i=7:10500, i=8:13000, i=9:13500, i=10:12500 D_i^{(2)}(岩石总量): i=1:12500, i=2:11000, i=3:13500, i=4:10500, i=5:11500, i=6:13500, i=7:10500, i=8:11500, i=9:13500, i=10:12500 d_j(卸点产量要求): j=1:12000, j=2:13000, j=3:13000, j=4:19000, j=5:13000 添加∑(j=1 to 5)Xij<=96(i=1,2,3,4,5,6,7,8,9,10) ∑(i=1 to 10)Xij<=160(i=1,2,3,4,5) 给出MATLAB求解代码
最新发布
07-06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值