Jzoj3497 隐藏指令

本文介绍了一种计算n维空间中长度为2m且起点与终点相同的简单路径数量的方法。通过动态规划的方式,利用f[i][j][k]记录在处理到第i维时的状态,最终求得所有可能路径的数量。

题意:求在n维空间里,长度为2m且起点和终点重合的简单路径(只能在一维中走)数量

显然,我们在计算方案时,每次必然加入在同一维度的,方向相反的行动

那么我们令f[i][j][k]表示目前在处理第i维,已经走了2*j步,其中有2*k步在第i维上

那么显然,f[i+1][j][0]+=f[i][j][k] 这等于是停止当前这一维的处理,开始下一维

那么另一种转移是这样滴

f[i][j+1][k+1]+=f[i][j][k]*C(k+1<<1,k+1)/C(k<<1,k)*C(j+1<<1,k+1<<1)/C(j<<1,k<<1)

表示的是,在这一维加入一对相反的行动,那么,显然,在这一维里面,正反都是一样的

所以对于同一维中,若有2k步,我们有C(2k,k)排序方案,这点很显然因为这相当于在长度为2k的空格中插入k个0和k个1,那么方案自然是C(2k,k),那么我们先除去上一次的方案再乘上我们新加入的方案

而对于不同维度,互相不影响,所以相当于是把2k个对象放入长度为2j的数组中,那么这样的方案就有C(2j,2k)

所以f[i][j+1][k+1]+=f[i][j][k]*C(k+1<<1,k+1)/C(k<<1,k)*C(j+1<<1,k+1<<1)/C(j<<1,k<<1),先除去当前状态的影响再加入新的元素重新计算

而组合数乘除可以用逆元预处理,最后答案为Σf[d][n][k] (0<=k<=n)

#pragma GCC opitmize("O3")
#pragma G++ opitmize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define L long long
#define M 1000000007
using namespace std;
inline L pow(L x,int k){
	L s=1;
	for(;k;x=x*x%M,k>>=1)
		if(k&1) s=s*x%M;
	return s;
}
inline void ad(L& x,L y){ x=(x+y)%M; }
L js[510],inv[510],A=0,f[210][210][210];
inline L C(int n,int m){ return js[n]*inv[m]%M*inv[n-m]%M; }
inline L gC(int n,int m){ return inv[n]*js[m]%M*js[n-m]%M; }
int main(){
	*js=*inv=1;
	for(int i=1;i<=500;++i) js[i]=js[i-1]*i%M;
	inv[500]=pow(js[500],M-2);
	for(int i=500;i;--i) inv[i-1]=inv[i]*i%M;
	int n,d; scanf("%d%d",&d,&n); f[1][0][0]=1;
	for(int i=1;i<=d;++i)
		for(int j=0;j<=n;++j)
			for(int k=0;k<=j;++k)
				if(f[i][j][k]){
					ad(f[i+1][j][0],f[i][j][k]);
					ad(f[i][j+1][k+1],f[i][j][k]*C(k+1<<1,k+1)%M*gC(k<<1,k)%M*C(j+1<<1,k+1<<1)%M*gC(j<<1,k<<1)%M);
				}
	for(int k=0;k<=n;++k) ad(A,f[d][n][k]);
	printf("%lld\n",A);
}


### 解题思路 题目要求解决的是一个与图相关的最小覆盖问题,通常在特定条件下可以通过状态压缩动态规划(State Compression Dynamic Programming, SCDP)来高效求解。由于状态压缩的适用条件是状态维度较小(例如K≤10),因此可以利用二进制表示状态集合,从而优化计算过程。 #### 1. 状态表示 - 使用一个整数 `mask` 表示当前选择的点集,其中第 `i` 位为 `1` 表示第 `i` 个节点被选中。 - 定义 `dp[mask]` 表示在选中 `mask` 所代表的点集后,能够覆盖的节点集合。 - 可以通过预处理每个点的邻域信息(包括自身和所有直接连接的点),快速更新状态。 #### 2. 预处理邻域 对于每个节点 `u`,预先计算其邻域范围 `neighbor[u]`,即从该节点出发一步能到达的所有节点集合。这样,在后续的状态转移过程中,可以直接使用这些信息进行合并操作。 #### 3. 状态转移 - 初始化:对每个单独节点 `u`,设置初始状态 `dp[1 << u] = neighbor[u]`。 - 转移规则:对于任意两个状态 `mask1` 和 `mask2`,如果它们没有交集,则可以通过合并这两个状态得到新的状态 `mask = mask1 | mask2`,并更新对应的覆盖范围为 `dp[mask1] ∪ dp[mask2]`。 - 在所有状态生成之后,检查是否某个状态的覆盖范围等于全集(即覆盖了所有节点)。如果是,则记录此时使用的最少节点数量。 #### 4. 最优解提取 遍历所有可能的状态,找出能够覆盖整个图的最小节点数目。 --- ### 时间复杂度分析 - 状态总数为 $ O(2^K) $,其中 `K` 是关键点的数量。 - 每次状态转移需要枚举所有可能的子集组合,复杂度为 $ O(2^K \cdot K^2) $。 - 整体时间复杂度控制在可接受范围内,适用于 `K ≤ 10~20` 的情况。 --- ### 代码实现(状态压缩 DP) ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 25; int neighbor[MAXN]; // 每个节点的邻域 int dp[1 << 20]; // dp[mask] 表示选中的点集合为 mask 时所能覆盖的点集合 int min_nodes; // 最小覆盖点数 void solve(int n, vector<vector<int>>& graph) { // 预处理每个节点的邻域 for (int i = 0; i < n; ++i) { neighbor[i] = (1 << i); // 包括自己 for (int j : graph[i]) { neighbor[i] |= (1 << j); } } // 初始化 dp 数组 memset(dp, 0x3f, sizeof(dp)); for (int i = 0; i < n; ++i) { dp[1 << i] = neighbor[i]; } // 状态转移 for (int mask = 1; mask < (1 << n); ++mask) { if (__builtin_popcount(mask) >= min_nodes) continue; // 剪枝 for (int sub = mask & (mask - 1); sub; sub = (sub - 1) & mask) { int comp = mask ^ sub; if (comp == 0) continue; int new_mask = mask; int covered = dp[sub] | dp[comp]; if (covered == (1 << n) - 1) { min_nodes = min(min_nodes, __builtin_popcount(new_mask)); } dp[new_mask] = min(dp[new_mask], covered); } } } int main() { int n, m; cin >> n >> m; vector<vector<int>> graph(n); for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; graph[u].push_back(v); graph[v].push_back(u); // 无向图 } min_nodes = n; solve(n, graph); cout << "Minimum nodes required: " << min_nodes << endl; return 0; } ``` --- ### 优化策略 - **剪枝**:当当前状态所用节点数已经超过已知最优解时,跳过后续计算。 - **提前终止**:一旦发现某个状态覆盖了全部节点,并且节点数达到理论下限,即可提前结束程序。 - **空间优化**:可以仅保存当前轮次的状态,减少内存占用。 --- ### 总结 本题通过状态压缩动态规划的方法,将原本指数级复杂度的问题压缩到可接受范围内。结合位运算技巧和预处理机制,能够高效地完成状态转移和覆盖判断操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值