有时候我们在进行模型的训练与优化的时候,是需要基于现有的数据集来操作的,要是数据量比较充足的情况下倒是还好说,但是要是遇到数据量不够的情况,该怎么办呢?今天小编就给大家来介绍几个方法来处理这种情况。
Faker模块
Python当中的Faker模块主要是用来生成伪数据,包括了城市、姓名等等,并且还支持中文,在开始使用该模块之前我们先用pip命令来下载安装完成
pip install faker
我们先随机地生成一些中文数据,代码如下
from faker import Faker
fake = Faker(locale='zh_CN')
## 随机生成一个城市
print(fake.city())
## 随机生成一个地址
print(fake.address())
output
柳州市
吉林省兴安盟县华龙任街P座 540041
要是我们想要生成其他语言或者地区表示的数据,只需要传入相对应的地区值,这里例举几个常用的,代码如下
fr_FR - French
es_ES - Spanish (Spain)
en_US - English (United States)
de_DE - German
ja_JP - Japanese
ko_KR - Korean
zh_CN - Chinese (China Mainland)
zh_TW - Chinese (China Taiwan)
我们可以看到填入的值的模式基本上是语种的缩写加上“_”再加上地区的缩写。
除了可以随机生成例如城市名称以及地址之外等模拟数据,还有很多其他方法可用,这些方法分为以下几类
- address: 地址
- person:人物类:性别、姓名等等
- color: 颜色类
- currency:货币
- phone_number:手机号码类
- 等等
具体使用的