题目链接:http://codeforces.com/problemset/problem/384/E
大意:给定一颗n节点的树,一共有两种操作:1. 给节点x加val,同时,它的所有孩子要减val,孙子加val,孙子的孩子减val,以此类推。2.查询节点x的值。
思路:对于某个节点来说,如果某节点的深度的奇偶性和该节点相同,则他们修改时符号也相同(要么都加要么都减),若奇偶性不同,则修改时符号也不同。因此,我们按照节点的奇偶性建立两棵线段树。修改时,分别修改在同一棵树上的节点和另一棵树上的节点即可。
#include<cstdio>
#include<cstring>
#include<string>
#include<cctype>
#include<iostream>
#include<set>
#include<map>
#include<cmath>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<algorithm>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fin(a) freopen("a.txt","r",stdin)
#define fout(a) freopen("a.txt","w",stdout)
typedef long long LL;
using namespace std;
typedef pair<int, int> P;
const int INF = 1e8 + 10;
const int maxn = 2e5 + 10;
int val[maxn];
vector<int> G[maxn];
int L[maxn], R[maxn];
int cnt;
bool vis[maxn];
int depth[maxn];
void dfs(int u, int d) {
L[u] = ++cnt; vis[u] = 1;
depth[u] = (d & 1);
for(int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
if(vis[v]) continue;
dfs(v, d+1);
}
R[u] = cnt;
}
struct Tree {
int sum[maxn<<2], add[maxn<<2];
void PushDown(int rt, int m) {
if(add[rt]) {
add[rt<<1] += add[rt];
add[rt<<1|1] += add[rt];
sum[rt<<1] += add[rt] * (m - (m >> 1));
sum[rt<<1|1] += add[rt] * (m >> 1);
add[rt] = 0;
}
}
void build(int l, int r, int rt) {
if(l == r) {
sum[rt] = add[rt] = 0;
}
else {
int m = (l + r) >> 1;
build(lson);
build(rson);
sum[rt] = add[rt] = 0;
}
}
void update(int ql, int qr, int x, int l, int r, int rt) {
if(ql <= l && r <= qr) {
add[rt] += x;
sum[rt] += (r-l+1)*x;
}
else {
PushDown(rt, r-l+1);
int m = (l + r) >> 1;
if(ql <= m) update(ql, qr, x, lson);
if(m < qr) update(ql, qr, x, rson);
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
}
int query(int p, int l, int r, int rt) {
if(l == r) return sum[rt];
PushDown(rt, r-l+1);
int m = (l + r) >> 1;
if(p <= m) return query(p, lson);
return query(p, rson);
}
}tree[2];
int main() {
int n, q;
scanf("%d%d", &n, &q);
for(int i = 1; i <= n; i++) {
scanf("%d", &val[i]);
G[i].clear();
}
for(int i = 1; i <= n-1; i++) {
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
memset(vis, false, sizeof vis);
dfs(1, 0);
tree[0].build(1, cnt, 1);
tree[1].build(1, cnt, 1);
for(int i = 1; i <= n; i++)
tree[depth[i]].update(L[i], L[i], val[i], 1, cnt, 1);
while(q--) {
int x, y, p;
scanf("%d", &p);
if(p == 1) {
scanf("%d%d", &x, &y);
int l = L[x], r = R[x];
tree[depth[x]].update(l, r, y, 1, cnt, 1);
tree[depth[x]^1].update(l, r, -y, 1, cnt, 1);
}
else {
scanf("%d", &x);
int p = L[x];
printf("%d\n", tree[depth[x]].query(p, 1, cnt, 1));
}
}
return 0;
}