代码随想录算法训练营day3

链表基础理论

链表是一种通过指针串联在一起的线性结构,每一个节点由两部分组成,一个是数据域一个是指针域(存放指向下一个节点的指针),最后一个节点的指针域指向null(空指针)

链表的入口节点称为链表的头结点(head)

 单链表

 双链表

单链表中的指针域只能指向节点的下一个节点

双链表:每一个节点有两个指针域,一个指向下一个节点,一个指向上一个节点

双链表 既可以向前查询也可以向后查询

循环链表

链表首尾相连

循环链表可以用来解决约瑟夫环问题

链表的存储方式

链表通过指针域的指针链接在内存中各个节点

链表中的节点在内存中不是连续分布的 ,而是散乱分布在内存中的某地址上,分配机制取决于操作系统的内存管理

 链表的定义

public class ListNode {
    // 结点的值
    int val;

    // 下一个结点
    ListNode next;

    // 节点的构造函数(无参)
    public ListNode() {
    }

    // 节点的构造函数(有一个参数)
    public ListNode(int val) {
        this.val = val;
    }

    // 节点的构造函数(有两个参数)
    public ListNode(int val, ListNode next) {
        this.val = val;
        this.next = next;
    }
}

链表的操作

删除节点

将要删除的节点的上一个节点的next指针 指向要删除的节点的下一个节点就可以了

在C++里最好手动释放这个节点

Java、Python,有自己的内存回收机制,不用自己手动释放

 添加节点

链表的增添和删除都是O(1)操作,也不会影响到其他节点

但是要注意,要是删除第五个节点,需要从头节点查找到第四个节点通过next指针进行删除操作,查找的时间复杂度是O(n)、

性能分析

 

数组在定义的时候,长度就是固定的,如果想改动数组的长度,需要重新定义一个新的数组

链表的长度可以是不固定的,可以动态增删, 适合数据量不固定,频繁增删,较少查询的场景

链表理论基础

建议:了解一下链表基础,以及链表和数组的区别

文章链接:https://programmercarl.com/%E9%93%BE%E8%A1%A8%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html

203.移除链表元素

 题意:删除链表中等于给定值 val 的所有节点。

示例 1: 输入:head = [1,2,6,3,4,5,6], val = 6 输出:[1,2,3,4,5]

示例 2: 输入:head = [], val = 1 输出:[]

示例 3: 输入:head = [7,7,7,7], val = 7 输出:[]

非头节点的移除操作,让节点next指针直接指向下下一个节点就可以

移除头结点和移除其他节点的操作是不一样的,因为链表的其他节点都是通过前一个节点来移除当前节点,而头结点没有前一个节点

将头结点向后移动一位就可以,这样就从链表中移除了一个头结点

直接使用原来的链表来进行删除操作

/**
 * 方法1
 * 时间复杂度 O(n)
 * 空间复杂度 O(1)
 * @param head
 * @param val
 * @return
 */
public ListNode removeElements(ListNode head, int val) {
    while(head!=null && head.val==val) {
        head = head.next;
    }
    ListNode curr = head;
    while(curr!=null && curr.next !=null) {
        if(curr.next.val == val){
            curr.next = curr.next.next;
        } else {
            curr = curr.next;
        }
    }
    return head;
}

/**
 * 方法1
 * 时间复杂度 O(n)
 * 空间复杂度 O(1)
 * @param head
 * @param val
 * @return
 */
public ListNode removeElements(ListNode head, int val) {
    while (head != null && head.val == val) {
        head = head.next;
    }
    // 已经为null,提前退出
    if (head == null) {
        return head;
    }
    // 已确定当前head.val != val
    ListNode pre = head;
    ListNode cur = head.next;
    while (cur != null) {
        if (cur.val == val) {
            pre.next = cur.next;
        } else {
            pre = cur;
        }
        cur = cur.next;
    }
    return head;
}

给链表添加一个虚拟头结点为新的头结点,此时要移除这个旧头结点元素1

设置一个虚拟头结点在进行删除操作

/**
 * 时间复杂度 O(n)
 * 空间复杂度 O(1)
 * @param head
 * @param val
 * @return
 */
public ListNode removeElements(ListNode head, int val) {
    // 设置一个虚拟的头结点
    ListNode dummy = new ListNode();
    dummy.next = head;

    ListNode cur = dummy;
    while (cur.next != null) {
        if (cur.next.val == val) {
            cur.next = cur.next.next;
        } else {
            cur = cur.next;        
        }
    }
    return dummy.next;
}

 

203.移除链表元素

建议: 本题最关键是要理解 虚拟头结点的使用技巧,这个对链表题目很重要。

题目链接/文章讲解/视频讲解::代码随想录

 707.设计链表

在链表类中实现这些功能:

  • get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1。
  • addAtHead(val):在链表的第一个元素之前添加一个值为 val 的节点。插入后,新节点将成为链表的第一个节点。
  • addAtTail(val):将值为 val 的节点追加到链表的最后一个元素。
  • addAtIndex(index,val):在链表中的第 index 个节点之前添加值为 val  的节点。如果 index 等于链表的长度,则该节点将附加到链表的末尾。如果 index 大于链表长度,则不会插入节点。如果index小于0,则在头部插入节点。
  • deleteAtIndex(index):如果索引 index 有效,则删除链表中的第 index 个节点。

 设计链表的五个接口:

  • 获取链表第index个节点的数值
  • 在链表的最前面插入一个节点
  • 在链表的最后面插入一个节点
  • 在链表第index个节点前面插入一个节点
  • 删除链表的第index个节点

 

//单链表
class MyLinkedList {

    class ListNode {
        int val;
        ListNode next;
        ListNode(int val) {
            this.val=val;
        }
    }
    //size存储链表元素的个数
    private int size;
    //注意这里记录的是虚拟头结点
    private ListNode head;

    //初始化链表
    public MyLinkedList() {
        this.size = 0;
        this.head = new ListNode(0);
    }

    //获取第index个节点的数值,注意index是从0开始的,第0个节点就是虚拟头结点
    public int get(int index) {
        //如果index非法,返回-1
        if (index < 0 || index >= size) {
            return -1;
        }
        ListNode cur = head;
        //第0个节点是虚拟头节点,所以查找第 index+1 个节点
        for (int i = 0; i <= index; i++) {
            cur = cur.next;
        }
        return cur.val;
    }

    public void addAtHead(int val) {
        ListNode newNode = new ListNode(val);
        newNode.next = head.next;
        head.next = newNode;
        size++;

        // 在链表最前面插入一个节点,等价于在第0个元素前添加
        // addAtIndex(0, val);
    }

    
    public void addAtTail(int val) {
        ListNode newNode = new ListNode(val);
        ListNode cur = head;
        while (cur.next != null) {
            cur = cur.next;
        }
        cur.next = newNode;
        size++;

        // 在链表的最后插入一个节点,等价于在(末尾+1)个元素前添加
        // addAtIndex(size, val);
    }

    // 在第 index 个节点之前插入一个新节点,例如index为0,那么新插入的节点为链表的新头节点。
    // 如果 index 等于链表的长度,则说明是新插入的节点为链表的尾结点
    // 如果 index 大于链表的长度,则返回空
    public void addAtIndex(int index, int val) {
        if (index < 0 || index > size) {
            return;
        }

        //找到要插入节点的前驱
        ListNode pre = head;
        for (int i = 0; i < index; i++) {
            pre = pre.next;
        }
        ListNode newNode = new ListNode(val);
        newNode.next = pre.next;
        pre.next = newNode;
        size++;
    }

    public void deleteAtIndex(int index) {
        if (index < 0 || index >= size) {
            return;
        }
        
        //因为有虚拟头节点,所以不用对index=0的情况进行特殊处理
        ListNode pre = head;
        for (int i = 0; i < index ; i++) {
            pre = pre.next;
        }
        pre.next = pre.next.next;
        size--;
    }
}

 

//双链表
class MyLinkedList {  

    class ListNode{
        int val;
        ListNode next, prev;
        ListNode(int val){
            this.val = val;
        }
    }

    //记录链表中元素的数量
    private int size;
    //记录链表的虚拟头结点和尾结点
    private ListNode head, tail;
    
    public MyLinkedList() {
        //初始化操作
        this.size = 0;
        this.head = new ListNode(0);
        this.tail = new ListNode(0);
        //这一步非常关键,否则在加入头结点的操作中会出现null.next的错误!!!
        this.head.next = tail;
        this.tail.prev = head;
    }
    
    public int get(int index) {
        //判断index是否有效
        if(index < 0 || index >= size){
            return -1;
        }
        ListNode cur = head;
        //判断是哪一边遍历时间更短
        if(index >= size / 2){
            //tail开始
            cur = tail;
            for(int i = 0; i < size - index; i++){
                cur = cur.prev;
            }
        }else{
            for(int i = 0; i <= index; i++){
                cur = cur.next; 
            }
        }
        return cur.val;
    }
    
    public void addAtHead(int val) {
        //等价于在第0个元素前添加
        addAtIndex(0, val);
    }
    
    public void addAtTail(int val) {
        //等价于在最后一个元素(null)前添加
        addAtIndex(size, val);
    }
    
    public void addAtIndex(int index, int val) {
        //判断index是否有效
        if(index < 0 || index > size){
            return;
        }

        //找到前驱
        ListNode pre = head;
        for(int i = 0; i < index; i++){
            pre = pre.next;
        }
        //新建结点
        ListNode newNode = new ListNode(val);
        newNode.next = pre.next;
        pre.next.prev = newNode;
        newNode.prev = pre;
        pre.next = newNode;
        size++;
        
    }
    
    public void deleteAtIndex(int index) {
        //判断index是否有效
        if(index < 0 || index >= size){
            return;
        }

        //删除操作
        ListNode pre = head;
        for(int i = 0; i < index; i++){
            pre = pre.next;
        }
        pre.next.next.prev = pre;
        pre.next = pre.next.next;
        size--;
    }
}

/**
 * Your MyLinkedList object will be instantiated and called as such:
 * MyLinkedList obj = new MyLinkedList();
 * int param_1 = obj.get(index);
 * obj.addAtHead(val);
 * obj.addAtTail(val);
 * obj.addAtIndex(index,val);
 * obj.deleteAtIndex(index);
 */

707.设计链表

建议: 这是一道考察 链表综合操作的题目,不算容易,可以练一练 使用虚拟头结点

题目链接/文章讲解/视频讲解:代码随想录

 206.反转链表

题意:反转一个单链表。

示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL

改变链表的next指针的指向,直接将链表反转 ,而不用重新定义一个新的链表

双指针法

首先定义一个cur指针,指向头结点,再定义一个pre指针,初始化为null

然后就要开始反转了,首先要把 cur->next 节点用tmp指针保存一下,也就是保存一下这个节点

接下来要改变 cur->next 的指向,将cur->next 指向pre ,此时已经反转了第一个节点了

循环走如下代码逻辑,继续移动pre和cur指针

最后,cur 指针已经指向了null,循环结束,链表也反转完毕了。 此时我们return pre指针就可以了,pre指针就指向了新的头结点

// 双指针
class Solution {
    public ListNode reverseList(ListNode head) {
        ListNode prev = null;
        ListNode cur = head;
        ListNode temp = null;
        while (cur != null) {
            temp = cur.next;// 保存下一个节点
            cur.next = prev;
            prev = cur;
            cur = temp;
        }
        return prev;
    }

 递归法

同样是当cur为空的时候循环结束,不断将cur指向pre的过程

双指针法中初始化 cur = head,pre = NULL,在递归法中可以从如下代码看出初始化的逻辑也是一样的,只不过写法变了

// 递归 
class Solution {
    public ListNode reverseList(ListNode head) {
        return reverse(null, head);
    }

    private ListNode reverse(ListNode prev, ListNode cur) {
        if (cur == null) {
            return prev;
        }
        ListNode temp = null;
        temp = cur.next;// 先保存下一个节点
        cur.next = prev;// 反转
        // 更新prev、cur位置
        // prev = cur;
        // cur = temp;
        return reverse(cur, temp);
    }
}
206.反转链表

建议先看我的视频讲解,视频讲解中对 反转链表需要注意的点讲的很清晰了,看完之后大家的疑惑基本都解决了。

题目链接/文章讲解/视频讲解:代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值