mmflow-官方教程翻译03 Finetuning models

本文介绍了如何在MMFlow中微调预训练模型以适用于特定数据集,包括修改训练策略、使用预训练模型及在不同环境下训练的方法。

原文链接:Tutorial 2: Finetuning Models — mmflow documentation

教程2:微调模型

        在FlyingChairs和FlyingThings3d数据集上预训练的光流估计器可以作为其他数据集的较好的预训练模型。本教程为用户提供了如何利用”模型园“Model Zoohttps://mmflow.readthedocs.io/en/latest/model_zoo.html中模型在其他数据集上训练,从而获得更好表现的指导说明。

修改训练策略

微调超参数和默认的训练策略是不同的,通常需要更小的学习率和更少的训练迭代次数。

# 优化器
optimizer = dict(type='Adam', lr=1e-5, weight_decay=0.0004, betas=(0.9, 0.999))
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
    policy='step',
    by_epoch=False,
    gamma=0.5,
    step=[
        45000, 65000, 85000, 95000, 97500, 100000, 110000, 120000, 130000,
     
### Parameter-Efficient Fine-Tuning (PEFT) 的背景 Parameter-Efficient Fine-Tuning 是一种针对基础模型(Foundation Models)优化的技术,旨在通过仅调整一小部分参数来实现高效的微调过程。这种方法不仅减少了计算资源的需求,还提高了训练效率[^1]。 在神经网络中,通常会应用正则化技术以防止过拟合并促进泛化能力。这些技术可以强制模型学习更小的权重参数,从而减少复杂度和潜在的风险。对于大规模的基础模型而言,Parameter-Efficient Fine-Tuning 方法进一步扩展了这一理念,专注于更新少量的关键参数而非整个模型的所有参数。 ### 如何获取 PEFT 论文 PDF? 为了下载有关 **Parameter-Efficient Fine-Tuning for Foundation Models** 的论文,可以通过以下几种方式: #### 1. 使用学术搜索引擎 利用 Google Scholar 或 Semantic Scholar 这样的平台输入关键词 “Parameter-Efficient Fine-Tuning”,即可找到相关研究文章及其链接。大多数情况下,可以直接访问免费版本或者通过机构权限下载全文[^2]。 #### 2. GitHub 和开源社区 许多研究人员会在其个人主页或 GitHub 上分享研究成果以及配套代码库。例如,在 awesome-LLM-resources 项目中可能包含了大量关于大语言模型(LLMs)及相关主题的资料汇总,其中包括 PEFT 技术的应用实例与理论解释。 以下是 Python 实现的一个简单示例,展示如何加载预定义适配器来进行高效微调: ```python from peft import get_peft_model, LoraConfig, TaskType # 定义 LoRA 配置 peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) model = ... # 加载基础模型 peft_model = get_peft_model(model, peft_config) ``` 此脚本片段展示了基于 Hugging Face 提供的 `peft` 库创建低秩适应层的过程,这是实现 parameter-efficient fine-tuning 常见的一种方法之一。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值