【机器学习】机器学习的基本分类-监督学习-随机森林(Random Forest)

随机森林是一种基于集成学习(Ensemble Learning)思想的算法,由多个决策树构成。它通过结合多棵决策树的预测结果来提升模型的泛化能力和准确性,同时减少过拟合的风险。


1. 随机森林的核心思想

  1. 多样性
    • 随机森林通过引入随机性,使每棵树有所不同,从而避免单一模型的过拟合问题。
  2. 集成决策
    • 对于分类问题,随机森林通过多数投票法确定最终类别。
    • 对于回归问题,随机森林通过平均法预测最终结果。

随机森林的“随机性”体现在两个方面:

  • 数据随机性(Bagging 方法):
    • 每棵树训练时使用一个由原始训练集通过**自助采样法(Bootstrap Sampling)**生成的样本子集。
    • 每个样本子集中可能包含重复的数据,也可能遗漏一些数据(袋外样本,Out-Of-Bag)。
  • 特征随机性
    • 每次节点分裂时,随机选择特征的子集作为候选,进一步增加模型的多样性。

2. 随机森林的构建过程

(1) 构建步骤
  1. 输入
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值