CCF-跳一跳(c语言)

该博客介绍了一款简化版的跳一跳游戏规则,玩家每次跳跃根据是否落在方块中心得分不同。如果跳到中心,得分会在1分基础上翻倍,并在连续命中时持续增加。博客提供了一个输入输出示例并说明了输入输出格式,要求根据规则计算游戏得分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述
  近来,跳一跳这款小游戏风靡全国,受到不少玩家的喜爱。
  简化后的跳一跳规则如下:玩家每次从当前方块跳到下一个方块,如果没有跳到下一个方块上则游戏结束。
  如果跳到了方块上,但没有跳到方块的中心则获得1分;跳到方块中心时,若上一次的得分为1分或这是本局游戏的第一次跳跃则此次得分为2分,否则此次得分比上一次得分多两分(即连续跳到方块中心时,总得分将+2,+4,+6,+8…)。
  现在给出一个人跳一跳的全过程,请你求出他本局游戏的得分(按照题目描述的规则)。
输入格式
  输入包含多个数字,用空格分隔,每个数字都是1,2,0之一,1表示此次跳跃跳到了方块上但是没有跳到中心,2表示此次跳跃跳到了方块上并且跳到了方块中心,0表示此次跳跃没有跳到方块上(此时游戏结束)。
输出格式
  输出一个整数,为本局游戏的得分(在本题的规则下)。
样例输入
1 1 2 2 2 1 1 2 2 0
样例输出
22
数据规模和约定
  对于所有评测用例,输入的数字不超过30个,保证0正好出现一次且为最后一个数字。

#include<stdio.h>
int main()
{
   
   //flag为每次得分,sum累计得分,count记录跳跃次数
    
关于CCF-CSP 2024年12月考试中的“房子”相关题目或内容,目前尚未有具体公开的信息表明该主题会出现在此次考试中。然而,“房子”类问题通常涉及动态规划、贪心算法或者路径优化等内容,在CSP或其他编程竞赛中较为常见。 以下是对此类问题可能设计的些分析: ### 可能的设计方向 此类问题的核心在于模拟跃过程并寻找最优解法。常见的变种包括但不限于以下几个方面: - **最短步数计算**:给定系列位置点以及初始能量值,求达到终点所需的最少跃次数[^1]。 - **最大覆盖范围**:通过调整每次跃的距离来最大化可访问区域的数量[^2]。 - **资源管理型挑战**:除了考虑距离外还需兼顾消耗的能量或者其他约束条件(如时间限制),从而增加复杂度。 ### 解决方案概述 针对上述提到的各种可能性,可以采用如下方法应对: #### 动态规划 (Dynamic Programming, DP) 如果目标是最优策略下的某种极值,则DP往往是首选工具之。定义状态转移方程时需注意边界情况处理及空间效率优化。 ```python def min_jumps(nums): n = len(nums) dp = [float('inf')] * n dp[0] = 0 for i in range(1, n): for j in range(i): if j + nums[j] >= i and dp[j] != float('inf'): dp[i] = min(dp[i], dp[j]+1) return dp[-1] if dp[-1]!=float('inf') else -1 ``` #### 贪婪算法 (Greedy Algorithm) 对于某些特定形式的问题来说,局部最优选择能够带来全局最佳效果;这时运用贪婪法则往往更加高效简洁。 ```python def can_reach_lastStoneWeight(stones): stones.sort(reverse=True) while len(stones)>1: first=stones.pop(0) second=(stones.pop(0))if stones else 0 diff=abs(first-second) if(diff>0): insert_pos=bisect.bisect_left(stones,diff) stones.insert(insert_pos,diff) return True if not stones or stones[0]==0 else False ``` ### 注意事项 实际比赛中遇到类似问题时需要注意以下几点: - 输入规模较大时应优先选用O(nlogn)甚至更低的时间复杂度算法- 预先判断是否存在可行解以免徒劳运算浪费宝贵比赛时间; - 特殊测试用例准备充分以验证程序鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值