2017多校第一场 Add More Zero(hdu6033)

本文介绍了一个关于特定超级计算机能够处理的整数范围的问题——AddMoreZero。该问题旨在找到最大的整数k,使得从1到10^k的所有整数能够在(2^m-1)的范围内被表示。文章提供了问题背景、输入输出样例及解决方案,并附带了实现代码。

 

Add More Zero

 

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1795    Accepted Submission(s): 1147

 

 

Problem Description

There is a youngster known for amateur propositions concerning several mathematical hard problems.

Nowadays, he is preparing a thought-provoking problem on a specific type of supercomputer which has ability to support calculations of integers between 0 and (2m−1) (inclusive).

As a young man born with ten fingers, he loves the powers of 10 so much, which results in his eccentricity that he always ranges integers he would like to use from 1 to 10k (inclusive).

For the sake of processing, all integers he would use possibly in this interesting problem ought to be as computable as this supercomputer could.

Given the positive integer m, your task is to determine maximum possible integer k that is suitable for the specific supercomputer.

 

 

Input

The input contains multiple test cases. Each test case in one line contains only one positive integer m, satisfying 1≤m≤105.

 

 

Output

For each test case, output "Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.

 

 

Sample Input


 

1 64

 

 

Sample Output


 

Case #1: 0 Case #2: 19

 

 

 

题解:求2进制的10进制表达的指数;

log10(2)*m,取下界

即ans=(int)floor(m*log10(2));

注意:log10(2)要写成log10((long double)2)

比赛时将log10(2)提前计算出来,但是不知道要取几位,导致wa

 

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int solve(int m)
{
	int ret=(int)floor(m*log10((long double)2));
	return ret;
}
int main()
{
    for(int t=1,m;scanf("%d",&m)==1;t++)
		printf("Case #%d: %d\n",t,solve(m));
	return 0;
}

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值