洛谷——P2024 [NOI2001]食物链

本文介绍了一种使用三倍长度数组的并查集算法,以解决包含三种关系(同类、猎物、天敌)的复杂问题。通过具体代码示例,详细解释了如何在并查集中表示和处理这些关系。

这是一道并查集的题目。我们先来分析一下题目。有三种动物,A 吃 B,B吃 C,C 吃 A。那么对于一个动物来说,另一个动物就有了三种情况:同类,天敌以及猎物。
很容易可以想到,仅仅是利用普通的并查集已经无法满足需要了,因为我们有三种情况需要表示。仅仅表示同类可以只用一倍长度的数组,那么如果是用三种关系,我们是不是可以用三倍长度的数组呢。
我们不妨来尝试一下,声明一个三倍长度的数组。第一倍长度表示的是同类关系,第二倍长度表示的是第一倍长度的动物的猎物,第三倍则表示的是天敌。这样就简单了,详细见代码注释。

#include<iostream>
using namespace std;
const int maxn = 50001;
int a[3 * maxn];
int find(int x) {
//找到根
 if (x != a[x])
  return find(a[x]);
}
void unity(int x, int y) {
//合并操作
 int rx = find(x);
 int ry = find(y);
 a[rx] = ry;
}
int main()
{
 int n, k;
 cin >> n >> k;
 for (int i = 0; i <= 3 * n; i++)
  a[i] = i;
 int ans = 0;
 for (int i = 0; i < k; i++) {
  int k, x, y;
  cin >> k >> x >> y;
//超过数组界限为错
  if (x > n || y > n) {
   ans++;
   continue;
  }
  if (k == 1) {
  //find(x) == find(y + n)表示的是x是否与y的猎物同类
  //find(x) == find(y + 2 * n))表示的是x是否与y的天敌同类
   if (find(x) == find(y + n) || find(x) == find(y + 2 * n)) {
    ans++;
    continue;
   }
   //如果为真,那么x的同类和y的同类,x的猎物是y的猎物,x的天敌是y的天敌
   unity(x, y);
   unity(x + n, y + n);
   unity(x + 2 * n, y + 2 * n);
  }
  else {
  //可以类比一下,仔细思考
   if (find(x) == find(y) || find(x + 2 * n) == find(y)) {
    ans++;
    continue;
   }
   unity(x + n, y);
   unity(x + 2 * n, y + n);
   unity(x, y + 2 * n);
  }
 }
 cout << ans;
 return 0;
}
<think>好的,用户需要查找洛谷P1173 NOI2016网格问题的Python解决方案或代码实现。首先,我需要回忆一下这个题目的具体要求。题目大意是判断一个网格是否会被障碍物分成不连通的部分,这可能涉及到图论中的割点或割边判断。 接下来,我需要考虑如何用Python实现这个问题的解法。这类题目通常需要高效的算法,因为数据规模可能较大。Python在处理大数据时可能会遇到性能问题,所以需要考虑优化方法。 首先,题目中的网格可以看作是一个图,其中某些格子被障碍物占据。判断是否存在割点,即移除某个点后图是否不连通,这是关键。Tarjan算法通常用于寻找割点,但实现起来需要注意细节,尤其是用Python时递归深度可能受限,可能需要用迭代方式或者优化代码。 然后,我需要查阅是否有现有的Python解法。不过用户提到站内引用中的内容似乎与快速排序或其他问题相关,可能不直接适用。但根据引用[2],用户提到了代码优化和UB(未定义行为)的问题,这提示在编写Python代码时需要注意避免类似错误,比如确保所有分支都有返回值,避免无限循环等。 另外,用户可能需要的是具体的代码示例。考虑到Python在二维网格问题中的处理,通常会用坐标转换、邻接表或矩阵来表示图结构。对于割点检测,可以使用Tarjan算法,维护每个节点的dfn(发现时间)和low(能回溯到的最早节点)值,判断是否存在子节点无法通过其他路径回到祖先节点。 不过,Python的递归深度限制可能对Tarjan算法产生影响,尤其是在大网格情况下。因此,可能需要用非递归的DFS实现,或者调整递归深度限制。但这也可能导致代码复杂度增加。 另外,题目中的障碍物可能形成多个连通块,需要处理多个情况。比如,当障碍物数量较少时,可能直接判断是否形成包围圈;当障碍物较多时,需要更复杂的判断逻辑。 总结步骤可能包括: 1. 将网格转换为图结构,标记障碍物。 2. 使用Tarjan算法寻找割点。 3. 判断是否存在割点导致图不连通。 4. 处理特殊情况,如网格过小、障碍物数量不足等。 在编写Python代码时,需要注意数据结构的效率,比如使用集合或字典来快速访问节点,避免重复计算。此外,可能的优化包括剪枝、预处理等。 最后,根据用户提供的引用,虽然引用内容不直接相关,但需要注意代码的正确性和优化,避免出现未定义行为或逻辑错误。例如,确保所有函数都有正确的返回语句,避免因编译器优化导致的错误,这在Python中可能表现为逻辑错误而非运行错误。</think>关于洛谷 P1173 NOI2016 网格问题的 Python 解法,该问题属于图论中的连通性判断问题,需要判断是否存在障碍物形成的割点导致网格不连通。以下是解题思路和实现要点: --- ### **问题核心分析** 题目要求判断 $n \times m$ 网格中,给定 $c$ 个障碍物的位置后,是否会将网格分割为多个不连通区域。关键在于判断是否存在 **割点**(即移除该点会导致图不连通)或 **割边**。 --- ### **算法选择** 1. **Tarjan 算法**:用于寻找无向图的割点。若存在割点,则网格可能被分割。 2. **连通性检测**:需考虑障碍物分布对整体连通性的影响,特别是边界情况和稀疏障碍物场景[^1]。 --- ### **Python 实现步骤** #### 1. **坐标离散化与邻接表构建** 将网格坐标转换为图中的节点,并为每个非障碍物节点建立邻接关系: ```python def build_graph(n, m, obstacles): obstacles_set = set(obstacles) graph = defaultdict(list) directions = [(-1,0), (1,0), (0,-1), (0,1)] for x in range(n): for y in range(m): if (x, y) not in obstacles_set: for dx, dy in directions: nx, ny = x + dx, y + dy if 0 <= nx < n and 0 <= ny < m and (nx, ny) not in obstacles_set: graph[(x, y)].append((nx, ny)) return graph ``` #### 2. **Tarjan 算法实现割点检测** 通过深度优先搜索(DFS)计算每个节点的 `dfn`(发现时间)和 `low`(回溯值): ```python def find_cut_points(graph, start): visited = set() dfn, low = {}, {} parent = {} cut_points = set() time = 0 def tarjan(u): nonlocal time dfn[u] = low[u] = time time += 1 children = 0 for v in graph[u]: if v not in dfn: parent[v] = u children += 1 tarjan(v) low[u] = min(low[u], low[v]) if parent.get(u) is None and children > 1: cut_points.add(u) elif parent.get(u) is not None and low[v] >= dfn[u]: cut_points.add(u) elif v != parent.get(u): low[u] = min(low[u], dfn[v]) tarjan(start) return cut_points ``` #### 3. **特殊情况处理** - **极小网格**:如 $n \times m \leq 2$ 时无需判断。 - **障碍物数量不足**:若障碍物数量少于 2,则无法分割网格[^2]。 --- ### **完整代码框架** ```python from collections import defaultdict def main(): n, m, c = map(int, input().split()) obstacles = [tuple(map(int, input().split())) for _ in range(c)] if n * m - c < 2: print("No") return if c == 0: print("Yes" if n * m >= 2 else "No") return graph = build_graph(n, m, obstacles) nodes = list(graph.keys()) if not nodes: print("No") return cut_points = find_cut_points(graph, nodes[0]) print("Yes" if len(cut_points) > 0 else "No") if __name__ == "__main__": main() ``` --- ### **注意事项** 1. **性能优化**:Python 递归深度有限,对大规模网格需改用迭代式 DFS。 2. **边界条件**:注意坐标范围和障碍物去重。 3. **连通性验证**:需确保所有非障碍物节点均被访问,防止漏判。 --- 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值