
本文使用18-layer结构
1导入常用的包
import time
import torch
import torchvision.transforms as transforms
import torch.nn as nn
import torchvision
import torch.nn.functional as F
2导入并处理数据
device =torch.device('cuda')
data_tansform={
'train': transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224,224))]
)
,
'test':transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224,224))]
)
}
train_data=torchvision.datasets.FashionMNIST(root='E:\PycharmProjects\data',train=True,transform=data_tansform['train'])
test_data=torchvision.datasets.FashionMNIST(root='E:\PycharmProjects\data',train=False,transform=data_tansform['test'])
print(len(train_data))
batch_size=64
train_iter=torch.utils.data.DataLoader(train_data,batch_size,shuffle=True)
test_iter=torch.utils.data.DataLoader(