Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax(CVPR20)

本文提出了一种称为平衡组softmax(BAGS)的方法,旨在解决深度学习模型在长尾目标检测中的类别不平衡问题。通过将类别分组并独立计算组内的softmax交叉熵损失,BAGS能更好地平衡训练,减少了头部类别的主导作用,提高了尾部类别的检测性能。此外,通过引入'others'类别进行组间校准,减少了假阳性。实验表明,BAGS在LVIS数据集上取得了显著的改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文
代码
近几年,关于long-tailed或imbalanced problem在各个领域都受到持续关注,cvpr、iccv等会议也一直有关于相关问题的topic。最近,偶然读到了几篇关于解决该问题的比较有意思的文章,于是就简单记录一下。这篇文章BAGS是针对object detection中的long-tailed问题(LVIS 2019 challenge数据集),本人不是做cv的,但是实验中发现其迁移到其他imbalanced classification上同样适用。

Introduction

作者首先在detection框架中解耦了表示representation和分类模块,发现对于不同种类的proposal分类器的权重是严重不平衡的,因为low-shot类不能有很好的机会能够被激活。这是目标检测中long-tailed数据集上结果差的一个直接原因(因为数据不平衡)。如下图:

在这里插入图片描述

可以

### CVPR2024 Conference Papers on 3D Semantic Segmentation As of the current date, specific details about papers accepted to CVPR 2024 are not publicly available since the conference has yet to occur and paper acceptance notifications have likely not been finalized or released. However, based on trends from previous years such as those highlighted in research focusing on depth projection for 3D semantic segmentation[^1], cross-dataset collaborative learning approaches for improving model generalization across different datasets[^2], and instance segmentation methods like SoftGroup that operate effectively on point clouds[^3], one can anticipate several key areas where advancements might be reported at CVPR 2024. #### Expected Research Directions - **Enhanced Multi-modal Fusion Techniques**: Integrating data from various sources (e.g., RGB images, LiDAR scans) could lead to more robust models capable of handling diverse environments. - **Improved Network Architectures**: Innovations in neural network design specifically tailored towards processing volumetric data may yield better performance metrics while reducing computational overhead. - **Advanced Training Strategies**: Novel training paradigms incorporating self-supervised learning, meta-learning, or transfer learning techniques aimed at overcoming challenges associated with limited labeled data sets will continue to evolve. - **Real-time Applications**: Efforts toward developing real-time systems suitable for autonomous driving applications would focus on optimizing inference speed without compromising accuracy. For staying updated with the latest developments related to 3D semantic segmentation expected to appear at CVPR 2024: - Monitor official channels including social media platforms linked directly to IEEE/CVF conferences. - Subscribe to newsletters provided by leading institutions involved in computer vision research. - Participate actively within relevant online communities dedicated to discussing cutting-edge technologies in this field.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Marcus-Bao

万水千山总是情,只给五角行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值