Paper Notes: Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommenda

该论文提出了一种改进的传统RNN结构,通过时间感知控制器和内容感知控制器,考虑上下文信息以控制状态转换。此外,提出了一种基于注意力的框架,动态结合用户的长期和短期偏好,以适应具体上下文生成用户表示。实验显示,该方法在公共和工业数据集上优于多种最新方法。
Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommendation
  • LINK: https://doi.org/10.24963/ijcai.2019/585

  • CLASSIFICATION: RECOMMENDER-SYSTEM, SEQUENTIAL RECOMMENDER, LONG SHORT INTEREST

  • YEAR: Submitted on 24 May 2019

  • FROM: IJCAI 2019

  • WHAT PROBLEM TO SOLVE: Previous approaches neglect the importance of dynamically integrating long-term and short-term user modeling paradigms. Moreover, users’ behaviors are much more complex than sentences in language modeling or images in visual computing, thus the classical structures of RNN such as Long Short-Term Memory (LSTM) need to be upgraded for better user modeling.

  • SOLUTION: In this paper, we improve the traditional RNN structure by proposing a time-aware controller and a content-aware controller, so that contextual information can be well considered to control the state transition. We further propose an attention-based framework to combine users’ long-term and short-term preferences, thus users’ representation can be generated adaptively according to the specific context. We conduct extensive experiments on both public and industrial datasets. The results demonstrate that our proposed method outperforms several state-of-art methods consistently.

  • CORE POINT:

    • Two Key Problems

      1. Dynamic Time Intervals: Intuitively, two actions within a short time interval tend to share a closer relationship than two actions that within a long time interval. Thus this kind of temporal distance deserve special handling.
      2. Dynamic Latent Intent: Customer intent, also known as the user’s main purpose behind his/her behavior, is often changing from session to session. Irrelevant actions are useless for predicting a user’s certain future action.
    • Short-Te

在搜索引擎中,`allintitle:` 是一种搜索指令,用于限定搜索结果的标题中必须包含指定的关键词。使用 `allintitle: Unsupervised bidirectional contrastive reconstruction and adaptive fine-grained channel attention networks for image dehazing` 进行搜索,会返回标题中精确包含 “Unsupervised bidirectional contrastive reconstruction and adaptive fine-grained channel attention networks for image dehazing” 的网页、学术论文等资源。 例如在 Google 等搜索引擎中输入该指令,就会按照此规则筛选出相关内容。同时,在学术数据库如 IEEE Xplore、ACM Digital Library、Web of Science、CNKI 等平台,也可以将此指令适当调整后用于搜索标题符合要求的学术文献。 在 Python 中可以利用 `selenium` 库模拟浏览器搜索该指令,示例代码如下: ```python from selenium import webdriver from selenium.webdriver.common.by import By import time # 设置 Chrome 浏览器驱动路径 driver = webdriver.Chrome() # 打开 Google 搜索页面 driver.get('https://www.google.com') # 找到搜索框并输入搜索指令 search_box = driver.find_element(By.NAME, 'q') search_box.send_keys('allintitle: Unsupervised bidirectional contrastive reconstruction and adaptive fine-grained channel attention networks for image dehazing') # 模拟按下回车键进行搜索 search_box.submit() # 等待页面加载 time.sleep(5) # 获取搜索结果 results = driver.find_elements(By.CSS_SELECTOR, 'div.g') for result in results: title = result.find_element(By.TAG_NAME, 'h3').text link = result.find_element(By.TAG_NAME, 'a').get_attribute('href') print(f"标题: {title}") print(f"链接: {link}") print("-" * 50) # 关闭浏览器 driver.quit() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值