N个骰子点数和及对应和值出现的概率

题目:把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。

这道算法题可采取动态规划法来求解。鉴于《剑指Offer》中对该题的解法晦涩难懂,尤其是代码,也没有指明其解题的思路本质上就是动态规划,所以提出自己的理解和答案。

动态规划法简介:
动态规划法求解的总体过程就是将问题分为多个不同的阶段的问题,根据最开始阶段已知的问题的解逐步推导出最终解。即动态规划算法通常基于一个递推公式及一个或多个初始状态。

过程细化为:
第一步,确定问题的解的表达式,称之为状态。
第二步,将最终问题的构造成上一阶段问题的解(可能被拆分为多个子问题的解),即根据当前阶段问题的解求出下一阶段问题的解方法,即递推公式,称之为状态转移方程。

已知初始状态的解,有了状态和状态转移方程,逐步递推,即可求出最终的解。

动态规划法求解过程可以使用递归来实现,也可以使用迭代来实现。递归的优势就是代码简洁明了,但是递归有时会对不同阶段的子问题重复求解,所以效率低于迭代。

解题思路:
第一步,确定问题解的表达式。可将f(n, s) 表示n个骰子点数的和为s的排列情况总数。
第二步,确定状态转移方程。n个骰子点数和为s的种类数只与n-1个骰子的和有关。因为一个骰子有六个点数,那么第n个骰子可能出现1到6的点数。所以第n个骰子点数为1的话,f(n,s)=f(n-1,s-1),当第n个骰子点数为2的话,f(n,s)=f(n-1,s-2),…,依次类推。在n-1个骰子的基础上,再增加一个骰子出现点数和为s的结果只有这6种情况!那么有&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值