原创 | 文 BFT机器人

《KPConv: Flexible and Deformable Convolution for Point Clouds》是一篇发表于2019年的研究论文,作者为Hugues Thomas、Charles R. Qi、Jean-Emmanuel Deschaud、Beatriz Marcotegui和François Goulette。这篇论文关注于点云数据上的卷积操作,提出了一种名为KPConv的卷积方法,旨在解决点云数据上的灵活性和可变形性问题。
01
背景
点云数据是从3D传感器(如激光雷达)获得的场景的一种表示形式,逐渐在自动驾驶、机器人导航、三维场景重建等领域得到广泛应用。因为点云数据直接捕捉了真实世界的几何信息,因此在处理三维信息方面具有独特的优势。传统的卷积神经网络(CNN)在图像领域获得了巨大成功,但直接将CNN应用于点云数据上存在一些挑战。点云数据是无序和不规则的,不同于像素网格。因此,需要设计新的卷积操作来适应点云数据的特点。点云数据中的物体形状和分布可能会因为姿态、视角和尺度的变化而产生巨大的变化。为了准确地捕捉这些变化,需要在点云上进行灵活的卷积操作,并能够处理可变形的形状。
该论文的研究背景强调了点云数据的特点、点云数据上的卷积问题以及灵活性与可变形性的需求,为提出新的KPConv方法提供了合理性和必要性。

最低0.47元/天 解锁文章
590

被折叠的 条评论
为什么被折叠?



