jzoj 6797. 【2014广州市选day2】hanoi

Description

你对经典的hanoi塔问题一定已经很熟悉了。有三根柱子,n个大小不一的圆盘,要求大盘不能压在小盘上,初始时n个圆盘都在第一根柱子上,最少要多少步才能挪到最后一根柱子上?
现在我们来将hanoi塔扩展一下,由三根柱子扩展到四根柱子,其余规则不变。例如,3个圆盘,四根柱子A到D,初始时圆盘都A柱上,我们用五步就可以将圆盘都挪到D柱上:
第一步:将圆盘1从A挪到B;
第二步:将圆盘2从A挪到C;
第三步:将圆盘3从A挪到D;
第四步:将圆盘2从C挪到D;
第五步:将圆盘1从B挪到D。
你的任务是写一个程序求解四柱子hanoi塔问题最少要多少步可以解决。

Input

输入只有一行,为一个正整数n。(1<=n<=1000)

Output

输出为一个正整数,代表n盘四柱子hanoi塔问题最少要多少步可以解决。

Solution

在做经典汉诺塔问题的时候,我们是用递推求出n个盘子时的步数的,我们做这道题的时候也就类比,尝试是否能够递推解决问题
以下是前10个数的表

盘子数步数
11
23
35
49
513
617
725
833
941
1049

观察上面的表格,我们发现,从1个盘子到2个盘子与2个到3个各增加了2步即 2 1 2^{1} 21步;从3个到4个、从4个到5个与从5个到6个各增加了4步即 2 2 2^{2} 22步,以此类推,我们做出猜想
f i = f i − 1 + 2 k f_{i}=f_{i-1}+2^{k} fi=fi1+2k
其中 k ∈ N ∗ k \in N^{*} kN且是递增的
对于 2 k 2^{k} 2k会加(k+1)次
数据 n ⩽ 1000 n \leqslant 1000 n1000所以直接递推就好

#include <cstdio>
#include <algorithm>
#define open(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
int n,cnt,num,i;
long long add,f[1001];
int main()
{
    open("hanoi");
    scanf("%d",&n);
    f[1]=1;f[2]=3;f[3]=5;
    add=4;cnt=3;num=3;
    for (i=4;i<=n;i++)
    {
        f[i]=f[i-1]+add;
        cnt--;
        if (!cnt) cnt=++num,add*=2;
    }
    printf("%lld",f[n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值