这些SQL你练习过吗?(网友提供的SQL)

SQL实践:分组查询、中位数计算、分数段统计及用户行为分析
文章主要内容涉及SQL练习,包括将成绩数据按科目汇总、查询特定ID的子节点、计算男女成绩的中位数、分数段统计、消费行为升级降级、会话识别以及朋友关系的互为朋友数量的计算。

行转列SQL练习


题目

把图1转换成图2结果展示

图1

CREATE TABLE `TEST_TB_GRADE` (
  `ID` int(10) NOT NULL AUTO_INCREMENT,
  `USER_NAME` varchar(20) DEFAULT NULL,
  `COURSE` varchar(20) DEFAULT NULL,
  `SCORE` float DEFAULT '0',
  PRIMARY KEY (`ID`)
)


insert into TEST_TB_GRADE(USER_NAME, COURSE, SCORE)  values
("张三", "数学", 34),
("张三", "语文", 58),
("张三", "英语", 58),
("李四", "数学", 45),
("李四", "语文", 87),
("李四", "英语", 45),
("王五", "数学", 76),
("王五", "语文", 34),
("王五", "英语", 89);

参考答案

select 
	USER_NAME,
  sum(if(COURSE='数学',SCORE,0)) as '数学',
  sum(if(COURSE='英语',SCORE,0)) as '英语',
  sum(if(COURSE='语文',SCORE,0)) as '语文' 
from TEST_TB_GRADE 
group by USER_NAME;

求某ID的所有子结点


题目

给一个 表 , 有 ID 和 PARENT_ID 两个字段 , 然后求某ID的所有子结点

ID

PARENT_ID

900

NULL

9011

901

9012

901

9013

9012

9014

9013

比如 求 901 的所有子结点 
结果为:
9011
9012
9013
9014

参考

with temp as(
    select * from table_name where PARENT_ID = '901'
    union all
    select t0.*  from temp,table_name t0 where temp.ID=t0.PARENT_ID
)

select ID from temp;

用SQL求中位数

关注一起学习,这些sql都是讨论的结果,可以关注进群一起学习

题目

在不使用现成的中位数函数情况下,统计男生和女生分别成绩的中位数是多少?

name

gender

score

A

2

B

3

C

2

D

3

E

2

参考

select gender,avg(score)
from 
(
  select gender,score 
  ,row_number() over(partition by gender order by score) as rn 
  ,count(*) over(partition by gender) as n
  from tmp
)as t 
where rn in (floor(n/2)+1,if(mod(n,2) = 0,floor(n/2),floor(n/2)+1))
group by gender
;
select 
gender,
avg(score) score
from ( 
select 
gender,
score, 
count(0) over (partition by gender) cnt_all , 
row_number() over(partition by gender order by score) rn 
from test 
) t 
where t.rn >= round(t.cnt_all/2.0) and t.rn <= round(t.cnt_all/2.0+0.5)
group by gender ; 
with tmp_d as (
select 'A' name , '男' gender, '2' score
from dual
union all
select 'B', '男', '3'
from dual
union all
select 'C', '女', '2'
from dual
union all
select 'D', '女', '3'
from dual
union all
select 'E', '女', '2'
from dual
)
SELECT /*+parallel(t,4)*/ tc.gender
,sum(tc.score)/count(*) 中位数 
from (
SELECT /*+parallel(t,4)*/ t.name
,t.gender
,t.score
,case when mod(count(*)over(partition by t.gender order by t.score 
rows between unbounded preceding and UNBOUNDED FOLLOWING) ,2)=0 then 1 else 0 end if_o
,count(*)over(partition by t.gender order by t.score 
rows between unbounded preceding and UNBOUNDED FOLLOWING) counts
,row_number() over(partition by t.gender order by t.score )rnn
from tmp_d t
)tc
-- 则当N为奇数时 N/2,;当N为偶数时:N/2 + (N/2+1) 两个值相加/2 
where (tc.if_o = 1 and (tc.rnn =counts/2 or tc.rnn =counts/2 +1 ))
or (tc.if_o = 0 and ceil(tc.counts/2) = tc.rnn)
group by tc.gender

一分一段

题目

  1. 考生分数倒序(分数由高到低)
  2. 一分一档次统计人数
  3. 结果展示一分为一段累加人数(你可以理解大于等于这个分段的人数)

注意点:

(1)分数相同的则为并列 与 累计人数。

(2)模拟数据少,需要考虑周全的是:中间不是连续递减分数,没有的需要补齐。

简单罗列字段

字段列

数据类型

描述

id

bigint

序号

stu_no

string

考生号

score

int

成绩

模拟数据

id

stu_no

score

1

100001

690

2

100002

690

3

100003

688

4

100004

687

5

100005

687

6

100006

686

7

100007

686

8

100008

686

9

100009

685

10

100010

689

11

100011

684

12

100012

684

目标的结果

分数

考生人数

690

2

689

3

688

4

687

6

686

9

685

10

684

12

683

12

682

13

681

13

680

14

679

15

参考

insert into henan_gaokao_score 
values
(
(1,'100001', 690),
(2,'100002',690),
(3 ,'100003',688),
(4 ,'100004',687),
(5 ,'100005',687),
(6 ,'100006',686),
(7 ,'100007', 686),
(8,'100008',686),
(9 ,'100009',685),
(10 ,'100010',689),
(11 ,'100011',684),
(12 ,'100012',684),
(13 ,'100013',682),
(14 ,'100014',679)
);

初始化维表

这里需要初始化一张维表,模拟记录 0-750分的 751条数据,作为分数段。(考虑点:如果不借助维表,单表操作你怎么做?)

数据生成方式很多,我罗列以下几个:

insert into score_batch(id,score)
values
(
(1,690),
(2,689),
(3,688),
(4,687),
(5,686),
(6,685),
(7,684),
(8,683),
(9,682),
(10,681),
(11,680),
(12,679),
(13,678)
);

SQL

select 
 t.score 分数,
 sum(t.cnt) over(order by t.score desc rows between UNBOUNDED PRECEDING and current row) 位次
from 
 (
    select
        sb.score score,
        NVL(sc.cnt,0) cnt
    from score_batch sb
    left join 
        (
         select 
            score,
            count(1) cnt,
            min(score) min_score,
            max(score) max_score
         from  henan_gaokao_score 
            group by score
        ) sc on sc.score = sb.score 
                and sb.score>=sc.min_score 
                and sb.score<=sc.max_score
) t;

连续升级多少次

题目

第一次消费 50元,排序为1,第二次消费70元,那么 标记为 消费升级,排序为2

第三次消费60元,那么低于第二次,则标记为消费降级,重新开始计算排序为1

模拟数据

CREATE TABLE consume 
(
id bigint ,   
name STRING , 
stat_date string,
amount bigint
)....;

insert into table consume values
(1,'dong','2022-04-03',50),
(2,'dong','2022-05-10',70),
(3,'dong','2022-05-22',60),
(4,'dong','2022-05-31',80),
(5,'dong','2022-06-17',75),
(6,'wang','2022-04-23',70),
(7,'wang','2022-05-04',60),
(8,'wang','2022-05-17',95),
(9,'wang','2022-05-31',60),
(10,'wang','2022-06-17',55)
(11,'dong','2022-05-20',80);

参考

select 
    *,
    ROW_NUMBER() over (partition by name, row2 order by `date`) as row3
from (
    select 
        *,
        sum(lags) over(partition by name order by `date`)  as row2 
    from (
        select *,
        if((amount - lag(amount) over(partition by name order by `date`))<0,1,0) as lags
        from consume
        ) a
    ) b
order by b.`date`;

流量表点击

select
  userid,
  time ,
  url,
  event,
  roomid,
  first_value(roomid) over(partition by userid,flag,ct order by time) result1 
from (
     select 
       userid,
       time,
       url,
       event,
       roomid,
       flag,
       count(roomid) over(partition by userid,flag order by time) ct 
     from (
       SELECT 
						userid ,
						time,url,
						event ,roomid,result,sum(flag) over(partition by userid order by time)flag
       from 
       (
        select 
          userid ,time,url,event ,roomid,result,SUBSTR(time,15,2)  hou ,
          SUBSTR(time,15,2) - lag(SUBSTR(time,15,2)) over(PARTITION by userid,left(time,12)) ,
          if(SUBSTR(time,15,2) - lag(SUBSTR(time,15,2)) over(PARTITION by userid,left(time,12) order by left(time,2)  ) >=5 ,1,0) flag
        from event 
       ) a 
     )b
)c

退货数量

with 
-- 模拟发货单 
t1 as (

select '1' as order_no,'A' as order_em_name,1 as order_num union all
select '1' as order_no,'B' as order_em_name,4 as order_num union all
select '2' as order_no,'A' as order_em_name,2 as order_num union all
select '2' as order_no,'B' as order_em_name,1 as order_num union all
select '2' as order_no,'C' as order_em_name,3 as order_num

),
-- 模拟退单 [ 退单号,退单数量 ]
t2 as (

select '1' as return_no , 2 as return_num union all
select '2' as return_no , 3 as return_num

),
-- 关联退单表,累减退单数量.
t3 as (

select 
t1.order_no,
t1.order_em_name,
t1.order_num,
t2.return_num as all_return_num,
( sum(t1.order_num) over(partition by order_no order by order_em_name) - t2.return_num ) as return_num
from t1 left join t2
on t1.order_no = t2.return_no

),
-- 三种情况 
t4 as (
select
order_no,order_em_name,order_num,all_return_num,
case 
when return_num<=0 then order_num
when return_num>=0 and return_num<order_num then order_num-return_num
else 0 end as return_num
from t3
)

-- 最终结果
select * from t4;

总成绩接近某个数

求session

select
uid,
ts,
(sum(ts1) over(partiontion by uid order by ts))+1 sessionId
from 
(
select 
uid,
ts,
if((ts - lag(ts,1,0) over(partiontion by uid order by ts))>=5,1,0) ts1
from event
) aa



select uid,ts, sum(case when lag >=5 then 1 else 0 end ) over (partition by uid order by ts rows between unbounded preceding and current row ) + 1 as session_id
from
(select uid, ts, ts - lag(ts) over (partition by uid order by ts) as lag
from app_login_log)tmp;

求互为朋友的数量

人员表user:(user_id bigint,name string)

朋友关系表relation:(user_id,friend_id)

输入示例:(1,2),(2,1),(1,3),(3,4)

输出示例1:1组用户互为朋友

输出示例2:1,2,张三,李四

select 
count( distinct left. userid ,left. friendid )/2 as num 
from relation as left 
inner join relation as right 
on left.frend_id = right.user_id
and left.user_id = right.frend_id
SQL是高级的非过程化编程语言,是沟通数据库服务器和客户端的重要工具,允许用户在高层数据结构上工作。它不要求用户指定对数据的存放方法,也不需要用户了解具体的数据存放方式,所以,具有完全不同底层结构的不同数据库系统,可以使用相同的SQL语言作为数据输入与管理的SQL接口。 它以记录集合作为操作对象,所有SQL语句接受集合作为输入,返回集合作为输出,这种集合特性允许一条SQL语句的输出作为另一条SQL语句的输入,所以SQL语句可以嵌套,这使它具有极大的灵活性和强大的功能,在多数情况下,在其他语言中需要一大段程序实现的功能只需要一个SQL语句就可以达到目的,这也意味着用SQL语言可以写出非常复杂的语句。    结构化查询语言(Structured Query Language)最早是IBM的圣约瑟研究实验室为其关系数据库管理系统SYSTEM R开发的一种查询语言,它的前身是SQUARE语言。SQL语言结构简洁,功能强大,简单易学,所以自从IBM公司1981年推出以来,SQL语言得到了广泛的应用。如今无论是像Oracle、Sybase、DB2、Informix、SQL Server这些大型的数据库管理系统,还是像Visual Foxpro、PowerBuilder这些PC上常用的数据库开发系统,都支持SQL语言作为查询语言。    美国国家标准局(ANSI)与国际标准化组织(ISO)已经制定了SQL标准。ANSI是一个美国工业和商业集团组织,负责开发美国的商务和通讯标准。ANSI同时也是ISO和International Electrotechnical Commission(IEC)的成员之一。ANSI 发布与国际标准组织相应的美国标准。1992年,ISO和IEC发布了SQL国际标准,称为SQL-92。ANSI随之发布的相应标准是ANSI SQL-92。ANSI SQL-92有时被称为ANSI SQL。尽管不同的关系数据库使用的SQL版本有一些差异,但大多数都遵循 ANSI SQL 标准。SQL Server使用ANSI SQL-92的扩展集,称为T-SQL,其遵循ANSI制定的 SQL-92标准。    SQL语言包含4个部分:    数据定义语言(DDL),例如:CREATE、DROP、ALTER等语句。    数据操作语言(DML),例如:INSERT(插入)、UPDATE(修改)、DELETE(删除)语句。    数据查询语言(DQL),例如:SELECT语句。    数据控制语言(DCL),例如:GRANT、REVOKE、COMMIT、ROLLBACK等语句。    SQL语言包括三种主要程序设计语言类别的语句:数据定义语言(DDL),数据操作语言(DML)及数据控制语言(DCL)。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值