【题目】
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
【题意】
Unique Binary Search Trees只需要让我们求出可能二叉搜索树的数目,而本题是让我们把这些可能的二叉搜索树都建出来。
【思路】
思路和Unique Binary Search Trees完全相同,将原问题分解为求解左右子树所有可能形态的子问题,用递归求解。只不过多了建树的环节。
【代码】
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode *> getAllBinaryTrees(int start, int end){
vector<TreeNode*> trees;
if(start>end){ //注意这里没有等号,Unique Binary Search Trees只是计数,叶子节点和NULL节点都计数为1, 而本题就不一样了,叶子节点作为一棵独立的子树生成。
trees.push_back(NULL);
return trees;
}
for(int k=start; k<=end; k++){
//得到左子树集合
vector<TreeNode*>leftTrees = getAllBinaryTrees(start, k-1);
//得到右子树集合
vector<TreeNode*>rightTrees = getAllBinaryTrees(k+1, end);
//组合,生成二叉搜索树
for(int l=0; l<leftTrees.size(); l++){
for(int r=0; r<rightTrees.size(); r++){
//创建根节点
TreeNode *root = (TreeNode*)malloc(sizeof(TreeNode));
root->val=k;
root->left=leftTrees[l];
root->right=rightTrees[r];
trees.push_back(root);
}
}
}
return trees;
}
vector<TreeNode *> generateTrees(int n) {
vector<TreeNode*>result;
if(n==0){result.push_back(NULL);return result;} //当n==0时是一棵空树,别忘了
result = getAllBinaryTrees(1, n);
return result;
}
};