Pytorch softmax和log_softmax & CrossEntropyLoss() 与 NLLLoss()

本文详细介绍了PyTorch中的Softmax函数,它将实数向量转换为概率分布。Log_softmax是Softmax的对数形式,用于提高计算效率和稳定性。此外,讨论了NLLLoss,它需要输入对数概率和目标标签,而CrossEntropyLoss则包含了Softmax和NLLLoss的功能,适用于网络最后一层为log_softmax的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、softmax

函数 Softmax(x) 也是一个 non-linearity, 但它的特殊之处在于它通常是网络中一次操作. 这是因为它接受了一个实数向量并返回一个概率分布.其定义如下. 定义 x 是一个实数的向量(正数或负数都无所谓, 没有限制). 然后, 第i个 Softmax(x) 的组成是
exp(xi)∑jexp(xj)

输出是一个概率分布: 每个元素都是非负的, 并且所有元素的总和都是1.

2、log_softmax

在softmax的结果上再做多一次log运算

While mathematically equivalent to log(softmax(x)), doing these two
operations separately is slower, and numerically unstable. This function
uses an alternative formulation to compute the output and gradient correctly.

虽然在数学上等价于log(softmax(x)),但做这两个

单独操作速度较慢,数值上也不稳定。这个函数

使用另一种公式来正确计算输出和梯度。

测试:

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np

data=autograd.Variable(torch.FloatTensor([1.0,2.0,3.0]))
log_softmax=F.log_softmax(data,dim=0)
print(log_softmax)

softmax=F.softmax(data,dim=0)
print(softmax)

np_softmax=soft
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值