为什么深度学习会兴起?(Why is Deep Learning taking off?)
本节视频主要讲了推动深度学习变得如此热门的主要因素。包括数据规模、计算量及算法的创新。(3个重点概念!请背书!)
深度学习和神经网络之前的基础技术理念已经存在大概几十年了,为什么它们现在才突然流行起来呢?对啊,为什么?看过我之前文章:人工智能的冷落与兴起,那么你就会了解发展历程了,但是这个深度学习为什么会独引爆全场呢?
本节课程主要讲述一些使得深度学习变得如此热门的主要驱动因素,这将会帮助你在你的组织机构内发现最好的时机来应用这些东西。
在过去的几年里,很多人都问为什么深度学习能够如此有效。当回答这个问题时,通常给他们画个图,在水平轴上画一个形状,在此绘制出所有任务的数据量,而在垂直轴上,画出机器学习算法的性能。比如说准确率体现在垃圾邮件过滤或者广告点击预测,或者是神经网络在自动驾驶汽车时判断位置的准确性,根据图像可以发现,如果你把一个传统机器学习算法的性能画出来,作为数据量的一个函数,你可能得到一个弯曲的线,就像图中这样,它的性能一开始在增加更多数据时会上升,但是一段变化后它的性能就会像一个高原一样。假设你的水平轴拉的很长很长,它们不知道如何处理规模巨大的数据,而过去十年的社会里,遇到的很多问题只有相对较少的数据量。
大量的数据
多亏数字化社会的来临,现在的数据量都非常巨大,我们花了很多时间活动在这些数字的领域,比如在电脑网站上、在手机软件上以及其它数字化的服务,它们都能创建数据,同时便宜的相机被配置到移动电话,还有加速仪及各类各样的传感器,同时在物联网领域我们也收集到了越来越多的数据(对哎,什么是物联网?有兴趣么?去查下就清楚了)。仅仅在过去的20年里对于很多应用,我们便收集到了大量的数据,远超过机器学习算法能够高效发挥