用Paddle动态图model,搭建一个神经网络,一共两层
class tryNet(Layer):
def __init__(self, start_node, mid_node):
super(tryNet,self).__init__()
self.line1 = Linear(input_dim=start_node, output_dim=mid_node, bias_attr=False, act='sigmoid', param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0, seed=824))
self.line2 = Linear(input_dim=mid_node, output_dim=10, bias_attr=False, act='softmax', param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=1.0, seed=824))
def forward(self, img):
line1 = self.line1(img)
line2 = self.line2(line1)
return line2
接下来要在上下文with fluid.dygraph.guard():
里运行,对吧
with fluid.dygraph.guard():
model = tryNet(start_node=start_node, mid_node=node_num)
model.train()
XX代码段
可以用model.parameters
函数来打印,该函数会返回一个列表,列表里的元素就是参数:
[ name linear_0.w_0, dtype: VarType.FP32 shape: [2, 1] lod: {}
dim: 2, 1
layout: NCHW
dtype: float
data: [-1.74573 -1.36293]
, name linear_1.w_0, dtype: VarType.FP32 shape: [1, 10] lod: {}
dim: 1, 10
layout: NCHW
dtype: float
data: [-1.74573 -1.36293 0.0348112 0.46533 0.230513 -0.486594 -0.39247 1.53845 0.328022 0.377883]
]
打印一下元素的种类
>>> type(model.parameters()[0])
paddle.fluid.framework.ParamBase
在稍微看两个方法,我就不解释了,直接看看例子就懂:
>>> model.parameters()[0].numpy()
array([[-1.7457268],
[-1.3629342]], dtype=float32)
>>> model.parameters()[0].shape
[2, 1]
>>> model.parameters()[0].name # 介个名字是paddle给你命名的, 你可以在搭建的时候命名
'linear_0.w_0'
>>> model.parameters()[0].dtype
VarType.FP32
>>> model.parameters()[0].value
bound method PyCapsule.value of name linear_0.w_0, dtype: VarType.FP32 shape: [2, 1] lod: {}
dim: 2, 1
layout: NCHW
dtype: float
data: [-1.74573 -1.36293]
OK,所以要看数据的话,一般用.numpy()
方法即可
如有需要,可查看下一篇博客:
https://blog.youkuaiyun.com/HaoZiHuang/article/details/107610925