D. Fafa and Ancient Alphabet【求概率+分数取模】

解决一个关于计算两个可能含有未知字符的字符串S1和S2的字典序概率的问题,其中一个字符串在字典序上大于另一个的概率需要被精确计算。

D. Fafa and Ancient Alphabet
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Ancient Egyptians are known to have used a large set of symbols  to write on the walls of the temples. Fafa and Fifa went to one of the temples and found two non-empty words S1 and S2 of equal lengths on the wall of temple written one below the other. Since this temple is very ancient, some symbols from the words were erased. The symbols in the set  have equal probability for being in the position of any erased symbol.

Fifa challenged Fafa to calculate the probability that S1 is lexicographically greater than S2. Can you help Fafa with this task?

You know that , i. e. there were m distinct characters in Egyptians' alphabet, in this problem these characters are denoted by integers from 1 to m in alphabet order. A word x is lexicographically greater than a word y of the same length, if the words are same up to some position, and then the word x has a larger character, than the word y.

We can prove that the probability equals to some fraction , where P and Q are coprime integers, and . Print as the answer the value , i. e. such a non-negative integer less than 109 + 7, such that , where  means that a and b give the same remainders when divided by m.

Input

The first line contains two integers n and m (1 ≤ n,  m ≤ 105) — the length of each of the two words and the size of the alphabet , respectively.

The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ m) — the symbols of S1. If ai = 0, then the symbol at position i was erased.

The third line contains n integers representing S2 with the same format as S1.

Output

Print the value , where P and Q are coprime and  is the answer to the problem.

Examples
input
Copy
1 2
0
1
output
500000004
input
Copy
1 2
1
0
output
0
input
Copy
7 26
0 15 12 9 13 0 14
11 1 0 13 15 12 0
output
230769233
Note

In the first sample, the first word can be converted into (1) or (2). The second option is the only one that will make it lexicographically larger than the second word. So, the answer to the problem will be , that is 500000004, because .

In the second example, there is no replacement for the zero in the second word that will make the first one lexicographically larger. So, the answer to the problem is , that is 0.


题意:两个数字串s1,s2,每个串含n个数字。如果数字为0,那么该数字可以变为1~m中的任意一个。问P(s1字典序>s2字典序)?  并对P取模qe9+7;

思路:重要一点,只有前面的数字都相等,才讨论当前的数字情况有意义。ans=∑P*(Q-1)%MOD*qm(m,1e9+5)。 

再掌握对分数取模运算以及计算逆元的方法既可以。由费马小定理,有a^(p-1)==1(mod p) → a^(p-2)mod p==inv(a) ,i.e. a对p的逆元= a^(p-2)%p;

复杂度为O(n*sqrt(qe9+7))

AC代码:

#include<bits/stdc++.h>
#define FAST ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
typedef long long ll;
const int MAX_N=1e5+50;
const int MOD=1e9+7;

int a[MAX_N];
int b[MAX_N];

ll qm(ll a,ll b){
    ll ans=1;
    while(b){
        if(b&1) ans=(ans*a)%MOD;
        a=(a*a)%MOD;
        b>>=1;
    }
    return ans%MOD;
}

void solve(){
    ll n,m,p=1;//p:前i-1个都相同的概率,因为只有前面都相同的情况下,比较当前的才有意义
    ll ans=0;
    cin >> n>>m;
    for(int i=1;i<=n;++i)   cin >> a[i];
    for(int i=1;i<=n;++i)   cin >> b[i];
    for(int i=1;i<=n;i++){
        if(a[i]&&b[i]){
            if(a[i]>b[i])   {ans+=p,ans%=MOD;break;}
            else if(a[i]<b[i])  break;
        }
        else if(!a[i]&&b[i]){
            ans+=p*(m-b[i])%MOD*qm(m,MOD-2); //取模的合理性在于(a+b)%mod=(a+b%mod)%mod,仅仅可以一个取模
            ans%=MOD;
            p*=qm(m,MOD-2);
            p%=MOD;
        }
        else if(a[i]&&!b[i]){
            ans+=p*(a[i]-1)%MOD*qm(m,MOD-2);
            ans%=MOD;
            p*=qm(m,MOD-2);
            p%=MOD;
        }
        else if(!a[i]&&!b[i]){
            ans+=p*(m-1)%MOD*qm(2*m,MOD-2); 这里是化简后的结果
            ans%=MOD;
            p*=qm(m,MOD-2);
            p%=MOD;
        }
    }
    cout << ans%MOD <<endl;
}

int main(void){
    FAST;
    solve();
    return 0;
}



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值