hdu 3507 斜率优化dp入门

本文介绍了一种算法问题,即如何以最小的成本打印一篇文章。该问题考虑了每打印一个单词的成本以及一行中打印多个单词的固定成本。通过动态规划方法求解最优方案,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Print Article

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 6389    Accepted Submission(s): 1965


Problem Description
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
 

Input
There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤  500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
 

Output
A single number, meaning the mininum cost to print the article.
 

Sample Input
  
5 5 5 9 5 7 5
 

Sample Output
  
230
 

Author
Xnozero
 

Source
 

Recommend
zhengfeng   |   We have carefully selected several similar problems for you:   3506  3501  3504  3505  3498 
 


参考blog :http://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>


using namespace std;

#define maxn 500005

typedef long long ll;

ll sum[maxn];
ll dp[maxn];
int q[maxn];
int head=0, tail=-1;
int n, m;

ll sq(ll tmp)
{
    return tmp*tmp;
}

int size()
{
    return tail-head+1;
}



ll getk_up(int i, int j)
{
    return dp[i]+sq(sum[i])-dp[j]-sq(sum[j]);
}

ll getk_down(int i, int j)
{
    return (sum[i]-sum[j])*2;
}


int main()
{

    while(scanf("%d%d", &n, &m)!=EOF){
        sum[0] = 0;
        for(int i = 1; i <= n; i++){
            scanf("%I64d", sum+i);
            sum[i] += sum[i-1];
        }


        head = 0, tail = -1;
        dp[0] = 0;
        q[++tail] = 0;
        for(int i = 1; i <= n; i++){
            while(size()>= 2 && getk_up(q[head+1],q[head])<=sum[i]*getk_down(q[head+1],q[head]))
                head++;

            int pos = q[head];
            dp[i] = dp[pos]+sq(sum[i]-sum[pos])+m;

            while(size()>=2 && getk_up(i,q[tail])*getk_down(q[tail],q[tail-1])<=getk_up(q[tail],q[tail-1])*getk_down(i, q[tail]))
                tail--;

            q[++tail] = i;
        }

        printf("%I64d\n", dp[n]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值