配置环境,并解压测评数据集
conda create -n opencompass python=3.10
conda activate opencompass
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 注意:一定要先 cd /root
cd /root
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
apt-get update
apt-get install cmake
pip install -r requirements.txt
pip install protobuf
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip
列出所有跟 InternLM 及 C-Eval 相关的配置
python tools/list_configs.py internlm ceval

打开 opencompass文件夹下configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py,贴入以下代码
from opencompass.models import HuggingFaceCausalLM
models = [
dict(
type=HuggingFaceCausalLM,
abbr='internlm2-1.8b-hf',
path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=100,
min_out_len=1,
max_seq_len=2048,
batch_size=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
直接运行,开始测试
export MKL_THREADING_LAYER=GNU
python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug
#或者
export MKL_SERVICE_FORCE_INTEL=1
python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug
测评过程极其漫长,以10%A100的实力,测评一份数据集仅需2-4步,但是执行的平均速度达到了惊人的70s/it,意味着进行一份数据集测试耗时3-5分钟不等





测试项目包括艺术,医学,文化,会计等等,竟然还有毛泽东思想
总共12804.49s,52个项目,结果如下:
dataset version metric mode internlm2-1.8b-hf
---------------------------------------------- --------- ------------- ------ -------------------
ceval-computer_network db9ce2 accuracy gen 47.37
ceval-operating_system 1c2571 accuracy gen 47.37
ceval-computer_architecture a74dad accuracy gen 23.81
ceval-college_programming 4ca32a accuracy gen 27.03
ceval-college_physics 963fa8 accuracy gen 42.11
ceval-college_chemistry e78857 accuracy gen 37.5
ceval-advanced_mathematics ce03e2 accuracy gen 26.32
ceval-probability_and_statistics 65e812 accuracy gen 22.22
ceval-discrete_mathematics e894ae accuracy gen 25
ceval-electrical_engineer ae42b9 accuracy gen 27.03
ceval-metrology_engineer ee34ea accuracy gen 54.17
ceval-high_school_mathematics 1dc5bf accuracy gen 22.22
ceval-high_school_physics adf25f accuracy gen 42.11
ceval-high_school_chemistry 2ed27f accuracy gen 52.63
ceval-high_school_biology 8e2b9a accuracy gen 26.32
ceval-middle_school_mathematics bee8d5 accuracy gen 36.84
ceval-middle_school_biology 86817c accuracy gen 80.95
ceval-middle_school_physics 8accf6 accuracy gen 47.37
ceval-middle_school_chemistry 167a15 accuracy gen 80
ceval-veterinary_medicine b4e08d accuracy gen 43.48
ceval-college_economics f3f4e6 accuracy gen 32.73
ceval-business_administration c1614e accuracy gen 39.39
ceval-marxism cf874c accuracy gen 68.42
ceval-mao_zedong_thought 51c7a4 accuracy gen 70.83
ceval-education_science 591fee accuracy gen 55.17
ceval-teacher_qualification 4e4ced accuracy gen 59.09
ceval-high_school_politics 5c0de2 accuracy gen 57.89
ceval-high_school_geography 865461 accuracy gen 47.37
ceval-middle_school_politics 5be3e7 accuracy gen 76.19
ceval-middle_school_geography 8a63be accuracy gen 75
ceval-modern_chinese_history fc01af accuracy gen 52.17
ceval-ideological_and_moral_cultivation a2aa4a accuracy gen 73.68
ceval-logic f5b022 accuracy gen 31.82
ceval-law a110a1 accuracy gen 29.17
ceval-chinese_language_and_literature 0f8b68 accuracy gen 47.83
ceval-art_studies 2a1300 accuracy gen 42.42
ceval-professional_tour_guide 4e673e accuracy gen 51.72
ceval-legal_professional ce8787 accuracy gen 34.78
ceval-high_school_chinese 315705 accuracy gen 36.84
ceval-high_school_history 7eb30a accuracy gen 65
ceval-middle_school_history 48ab4a accuracy gen 86.36
ceval-civil_servant 87d061 accuracy gen 42.55
ceval-sports_science 70f27b accuracy gen 52.63
ceval-plant_protection 8941f9 accuracy gen 40.91
ceval-basic_medicine c409d6 accuracy gen 68.42
ceval-clinical_medicine 49e82d accuracy gen 36.36
ceval-urban_and_rural_planner 95b885 accuracy gen 52.17
ceval-accountant 002837 accuracy gen 36.73
ceval-fire_engineer bc23f5 accuracy gen 38.71
ceval-environmental_impact_assessment_engineer c64e2d accuracy gen 51.61
ceval-tax_accountant 3a5e3c accuracy gen 36.73
ceval-physician 6e277d accuracy gen 42.86
ceval-stem - naive_average gen 40.59
ceval-social-science - naive_average gen 58.21
ceval-humanities - naive_average gen 50.16
ceval-other - naive_average gen 45.43
ceval-hard - naive_average gen 33.76
ceval - naive_average gen 47.03


但是这个测试会有部分测试结果会受未知因素影响
例如
我的测试结果:27.03
ceval-college_programming 4ca32a accuracy gen 27.03
样本1的结果:13.51
ceval-college_programming 4ca32a accuracy gen 13.51
样本2的结果:35.14

ceval-college_programming 4ca32a accuracy gen 35.14
使用的方法均为同一方法,模型也相同,但是数据会有巨大差异,分数相差将近100%
测试方法参考:
Tutorial/docs/L1/OpenCompass/readme.md at camp3 · InternLM/Tutorial (github.com)
930

被折叠的 条评论
为什么被折叠?



