hdu1506---Largest Rectangle in a Histogram(单调栈)

本文介绍了一种求解直方图中最大矩形面积的高效算法。通过使用单调栈记录直方图中每个柱子的高度及其位置,可以快速计算出以每个柱子为高的最大矩形面积。该算法在多个测试用例上表现良好,能够处理大量的输入数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

Input
The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, …, hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

Output
For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

Sample Input

7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0

Sample Output

8
4000

Source
University of Ulm Local Contest 2003

Recommend
LL | We have carefully selected several similar problems for you: 1505 1058 2870 1864 2830

Statistic | Submit | Discuss | Note

单调栈

/*************************************************************************
    > File Name: hdu1506.cpp
    > Author: ALex
    > Mail: zchao1995@gmail.com 
    > Created Time: 2015年05月07日 星期四 18时25分41秒
 ************************************************************************/

#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#include <set>
#include <vector>

using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

stack <PLL> st;
int height[100110];
int l[100110];
int r[100110];

int main() {
    int n;
    while (~scanf("%d", &n), n) {
        for (int i = 1; i <= n; ++i) {
            scanf("%d", &height[i]);
            l[i] = r[i] = i;
        }
        while (!st.empty()) {
            st.pop();
        }
        for (int i = n; i >= 1; --i) {
            if (st.empty()) {
                st.push(make_pair(height[i], i));
            }
            else {
                while (!st.empty()) {
                    PLL u = st.top();
                    if (u.first <= height[i]) {
                        break;
                    }
                    st.pop();
                    l[u.second] = i + 1;
                }
                st.push(make_pair(height[i], i));
            }
        }
        while (!st.empty()) {
            PLL u = st.top();
            st.pop();
            l[u.second] = 1;
        }
        for (int i = 1; i <= n; ++i) {
            if (st.empty()) {
                st.push(make_pair(height[i], i));
            }
            else {
                while (!st.empty()) {
                    PLL u = st.top();
                    if (u.first <= height[i]) {
                         break;
                    }
                    st.pop();
                    r[u.second] = i - 1;
                }
                st.push(make_pair(height[i], i));
            }
        }
        while (!st.empty()) {
            PLL u = st.top();
            st.pop();
            r[u.second] = n;
        }
        LL ans = 0;
        for (int i = 1; i <= n; ++i) {
            ans = max(ans, (LL)height[i] * (r[i] - l[i] + 1));
        }
        printf("%lld\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值