如何高效进行数据采集,这里有一套完整方案

本文探讨了数据采集的重要性,强调了数据质量在数据分析中的基石作用,并介绍了GrowingIO如何通过无埋点技术保障数据采集的高效性。文章详细阐述了数据采集面临的问题,如沟通不明确、时机不准确等,以及GrowingIO提供的解决方案,包括无埋点的定义、优势和适用场景。同时,提出了完整埋点方案设计的四要素:确认事件与变量、明确触发时机、规范命名和明确实施优先级,强调团队协作在落地埋点方案中的关键作用。

在这里插入图片描述大家好,今天给大家带来指标实施体系中关于落地实施方案的一点经验,希望可以在日常的数据采集中对大家有所帮助。

作者:王汉 来源:GrowingIO 增长公开课第 41 期

GrowingIO 高级技术顾问,毕业于北京大学,Extron 认证工程师。服务过奇瑞汽车、中铁建工、滴滴等头部企业,有丰富的技术部署经验。

一. 数据质量是数据分析的基石

假设一个场景:我们想要采集一个广告投放页的数据。

首先,我们与技术同学描述用户进入 App 开屏页所面临的场景:浏览—点击—跳转到广告页;接着,我们提出埋点需求。

点击数据分为有效点击和无效点击两类,但是由于技术侧同学并不会纠结此问题。他便随便从网上下载了一个闪屏页框架,集成到项目中。

在该框架下,点击动作被拆解为:按下,抬起。而我们平时认为的点击动作应该是:短时间内按下和抬起两个动作同时出发。

由于框架的目标是增加点击率,即让看到广告详情页的人变多。所以,当用户按下的时候,就已经触发了跳转到详情页的操作。

大部分非目标客户都会很急躁的退出广告详情页,而真正看到广告并感兴趣的人员则会主动进入广告详情页。

由此带来的洞察结果是:点击率高,转化效果差。市场侧的同学误认为是广告设计的失败,这会影响下次广告投放的视觉效果或投放策略。

通过上述例子,我们得出结论:数据采集的时机和技术侧的实现方式会大大影响业务侧的决策。

“九层之台,起于累土。”在形成一套可被洞察的数据之前,数据采集是最基础也是最关键的步骤。只有数据采得准,这个洞察结果才能在你做商业决策时提供帮助。否则将适得其反,再漂亮的数据分析也带不来实际的效果。

但是在埋点方案的实际实施过程中,我们可能会遇到以下困惑:

  • 如何和技术端沟通你的埋点需求?
  • 技术同学是否很快理解并落地?
  • 最终数据生产结果是否符合你的预期?

GrowingIO 在与上百家客户落地埋点方案的经验中,发现“数据采集带来的数据质量问题”也许已经成为了企业的共性问题,而导致这一问题发生的原因主要有以下 4 点:

  • 前期沟通业务不明确。例如程序员不清楚有效点击和无效点击的区别,只是单纯地从技术层面完成埋点;
  • 采集时机口径对不齐。你希望采集数据的那个时机,技术同学并不明确;
  • 采集点没有统一管理。如果没有统一的渠道去管理点击、浏览等数据,你的埋点方案将因繁琐的程序而无法落地;
  • 版本更新。比如你在新旧版本之间进行比对时,无法发现数据的变化。

数据采集关乎数据质量,它需要产品及业务侧同事做出让技术同学“看得懂、埋的对、实施快”的技术落地方案。

二. GrowingIO 为数据高效采集保驾护航

针对这些棘手问题,GrowingIO 的无埋点技术可以快捷定义页面、按钮、文本框等常见用户行为操作,从而减少在某些重复性高的用户共性行为的埋点代码操作量,为数据快速可视化提供便利。

1.无埋点的定义

什么是无埋点?我们先来看看你是否遇到过以下这些场景:

  • 做了一场运营活动,需要在
需求响应动态冰蓄冷系统需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕“需求响应动态冰蓄冷系统需求响应策略的优化研究”展开,基于Matlab代码实现,重点探讨了冰蓄冷系统在电力需求响应背景下的动态建模优化调度策略。研究结合实际电力负荷电价信号,构建系统能耗模型,利用优化算法对冰蓄冷系统的运行策略进行求解,旨在降低用电成本、平衡电网负荷,并提升能源利用效率。文中还提及该研究为博士论文复现,涉及系统建模、优化算法应用仿真验证等关键技术环节,配套提供了完整的Matlab代码资源。; 适合人群:具备一定电力系统、能源管理优化算法基础,从事科研或工程应用的研究生、高校教师及企业研发人员,尤其适合开展需求响应、综合能源系统优化等相关课题研究的人员。; 使用场景及目标:①复现博士论文中的冰蓄冷系统需求响应优化模型;②学习Matlab在能源系统建模优化中的具体实现方法;③掌握需求响应策略的设计思路仿真验证流程,服务于科研项目、论文写作或实际工程方案设计。; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注系统建模逻辑优化算法的实现细节,按文档目录顺序系统学习,并尝试调整参数进行仿真对比,以深入理解不同需求响应策略的效果差异。
综合能源系统零碳优化调度研究(Matlab代码实现)内容概要:本文围绕“综合能源系统零碳优化调度研究”,提供了基于Matlab代码实现的完整解决方案,重点探讨了在高比例可再生能源接入背景下,如何通过优化调度实现零碳排放目标。文中涉及多种先进优化算法(如改进遗传算法、粒子群优化、ADMM等)在综合能源系统中的应用,涵盖风光场景生成、储能配置、需求响应、微电网协同调度等多个关键技术环节,并结合具体案例(如压缩空气储能、光热电站、P2G技术等)进行建模仿真分析,展示了从问题建模、算法设计到结果验证的全流程实现过程。; 适合人群:具备一定电力系统、能源系统或优化理论基础,熟悉Matlab/Simulink编程,从事新能源、智能电网、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①开展综合能源系统低碳/零碳调度的科研建模算法开发;②复现高水平期刊(如SCI/EI)论文中的优化模型仿真结果;③学习如何将智能优化算法(如遗传算法、灰狼优化、ADMM等)应用于实际能源系统调度问题;④掌握Matlab在能源系统仿真优化中的典型应用方法。; 阅读建议:建议结合文中提供的Matlab代码网盘资源,边学习理论模型边动手调试程序,重点关注不同优化算法在调度模型中的实现细节参数设置,同时可扩展应用于自身研究课题中,提升科研效率模型精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值