题目大意:有n个物种,经过m次进化,然后T代表有t行数据,每组数据i,j,p(i,j),代表物种i,到j演变的数量百分比。求第n-1种物种的最终数量。(ps:zoj最后输出要用%f- -!)
思路:经历子过程最终到达最后一阶段,我们可以用矩阵优化。r[i][j]代表从i到j的数量分数。直接再进行块速幂即可。
#include<map>
#include<queue>
#include<cmath>
#include<cstdio>
#include<stack>
#include<iostream>
#include<cstring>
#include<algorithm>
#define LL long long
#define inf 0x3f3f3f3f
#define eps 1e-14
#define ls l,mid,rt<<1
#define rs mid+1,r,rt<<1|1
const double PI=acos(-1.0);
using namespace std;
long long n;
double arr[233];
struct node{
double r[233][233];
}q;
void matrix_pow(node &a,node &b){
long long i,j,k;
node t;
memset(t.r,0,sizeof(t.r));
for(k = 0;k < n;++ k){
for(i =0 ;i < n;i++){
if(a.r[i][k]<= eps) continue;
for(j = 0;j < n;++ j){
if(b.r[k][j]<= eps) continue;
t.r[i][j] += a.r[i][k]*b.r[k][j];
}
}
}
a = t;
}
struct node so(node &q,long long m){
long long i,j,k;
node tmp;
memset(tmp.r,0,sizeof(tmp.r));
for(i=0;i<n;++i)
tmp.r[i][i]=1;
while(m){
if(m&1){
matrix_pow(tmp,q);
}
matrix_pow(q,q);
m =m >> 1;
}
q = tmp;
}
int main(){
long long m,k,i,j;
while(~scanf("%lld%lld",&n,&m)){
if((!n)&&(!m) ) break;
for(i =0 ;i< n;++ i)
scanf("%lf",&arr[i]);
for(i = 0;i < n;++ i ){
for(j = 0 ;j < n;++ j ){
if(i!=j)
q.r[i][j] = 0;
else
q.r[i][j] =1;
}
}
long long cnt,x,y;
double z;
scanf("%lld",&cnt);
for(i = 0 ;i < cnt;++ i ){
scanf("%lld%lld%lf",&x,&y,&z);
q.r[x][x] -= z;
q.r[x][y] += z;
}
so(q,m);
double ans=0;
for(i = 0;i < n;++i ){
ans += arr[i]*q.r[i][n-1];
}
printf("%.0f\n",ans);
}
return 0;
}