描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2 样例输出 15
比如,如下4 * 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2 样例输出 15

这篇博客介绍了一种使用动态规划解决寻找二维数组中最大子矩阵和的方法。通过将二维数组压缩成一维数组,然后找出一维数组中连续子数组的最大和,从而简化问题。示例代码展示了如何实现这一过程。
最低0.47元/天 解锁文章
1778

被折叠的 条评论
为什么被折叠?



