泰勒(Taylor)级数

泰勒级数详解与应用
泰勒级数是一种利用无限项连加式表示函数的方法。文章详细介绍了泰勒中值定理及其两种形式,接着阐述了二元函数、多元函数及矢量函数的泰勒级数展开,并给出了将泰勒级数写成矩阵形式的表达。通过泰勒级数,可以近似表示具有连续多阶导数的函数。

泰勒级数是用无限项的连加式来表示一个函数。设f(x)f(x)f(x)x0x_0x0处具有nnn阶导数,试找出一个关于(x−x0)(x-x_0)(xx0)nnn次多项式
pn(x)=a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)n p_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^npn(x)=a0+a1(xx0)+a2(xx0)2++an(xx0)n

来近似表达f(x)f(x)f(x),要求使得pn(x)p_n(x)pn(x)f(x)f(x)f(x)之差是当 x→x0x\rightarrow x_0xx0 时比(x−x0)n(x-x_0)^n(xx0)n高阶的无穷小。
pn(x)p_n(x)pn(x)x0x_0x0处的函数值及它的直到nnn阶导数在x0x_0x0处的值依次与f(x0),f′(x0),⋯ ,f(n)(x0)f(x_0), f'(x_0), \cdots, f^{(n)}(x_0)f(x0),f(x0),,f(n)(x0)相等,即满足
pn(x0)=f(x0),pn′(x0)=f′(x0), p_n(x_0)=f(x_0), p_n'(x_0)=f'(x_0), pn(x0)=f(x0),pn(x0)=f(x0),

pn′′(x0)=f′′(x0),⋯ ,pn(n)(x0)=f(n)(x0),p_n''(x_0)=f''(x_0), \cdots, p_n^{(n)}(x_0)=f^{(n)}(x_0),pn(x0)=f(x0),,pn(n)(x0)=f(n)(x0),
按这些等式来确定系数a0,a1,a2,⋯ ,ana_0, a_1, a_2, \cdots, a_na0,a1,a2,,an。对pn(x)p_n(x)pn(x)求各阶导数,然后分别代入以上等式,得
a0=f(x0),1⋅a1=f′(x0),a_0=f(x_0), 1\cdot a_1=f'(x_0),a0=f(x0),1a1=f(x0),

2!a2=f′′(x0),⋯ ,n!an=f(n)(x0)2!a_2=f''(x_0), \cdots , n!a_n=f^(n)(x_0)2!a2=f(x0),,n!an=f(n)(x0)

可得
a0=f(x0),a1=f′(x0),a2=12!f′′(x0),⋯ ,an=1n!f(n)(x0) a_0=f(x_0), a_1=f'(x_0), a_2=\frac{1}{2!}f''(x_0), \cdots, a_n=\frac{1}{n!}f^{(n)}(x_0)a0=f(x0),a1=f(x0),a2=2!1f(x0),,an=n!1f(n)(x0)

由此可得
pn(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)np_n(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^npn(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n

泰勒中值定理1

如果函数f(x)f(x)f(x)x0x_0x0处具有nnn阶导数,那么存在x0x_0x0的一个领域,对于该邻域内的任一 xxx,有
f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)n+Rn(x)f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)

其中
Rn(x)=o((x−x0)n)R_n(x)=o((x-x_0)^n)Rn(x)=o((xx0)n)

泰勒中值定理2

如果函数f(x)f(x)f(x)x0x_0x0的某个邻域U(x0)U(x_0)U(x0)内具有(n+1)(n+1)(n+1)阶导数,那么对任一 x∈U(x0)x\in U(x_0)xU(x0),有
f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)n+Rn(x)f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)

其中
Rn(x)=f(n+1)(ζ)(n+1)!(x−x0)n+1R_n(x)=\frac{f^{(n+1)}(\zeta)}{(n+1)!}(x-x_0)^{n+1}Rn(x)=(n+1)!f(n+1)(ζ)(xx0)n+1

这里ζ\zetaζx0x_0x0xxx之间的某个值。

二元函数的泰勒级数

如果函数f(x,y)f(x, y)f(x,y)(x0,y0)(x_0, y_0)(x0,y0)处具有nnn阶偏导数,那么存在(x0,y0)(x_0, y_0)(x0,y0)的一个领域,对于该邻域内的任一 (x,y)(x,y)(x,y),有
f(x,y)=f(x0,y0)+fx′(x0,y0)(x−x0)+fy′(x0,y0)(y−y0)+fxx′′(x0,y0)2!(x−x0)2+fxy′′(x0,y0)2!(x−x0)(y−y0)+fyx′′(x0,y0)2!(x−x0)(y−y0)+fyy′′(x0,y0)2!(y−y0)2⋯+Rn(x,y) \begin{aligned} f(x,y)= & f(x_0, y_0)+ \\ & f_x'(x_0, y_0)(x-x_0)+f_y'(x_0, y_0)(y-y_0)+ \\ & \frac{f_{xx}''(x_0, y_0)}{2!}(x-x_0)^2 + \frac{f_{xy}''(x_0, y_0)}{2!}(x-x_0)(y-y_0) + \frac{f_{yx}''(x_0, y_0)}{2!}(x-x_0)(y-y_0) + \frac{f_{yy}''(x_0, y_0)}{2!}(y-y_0)^2\\ &\cdots + R_n(x, y) \end{aligned} f(x,y)=f(x0,y0)+fx(x0,y0)(xx0)+fy(x0,y0)(yy0)+2!fxx(x0,y0)(xx0)2+2!fxy(x0,y0)(xx0)(yy0)+2!fyx(x0,y0)(xx0)(yy0)+2!fyy(x0,y0)(yy0)2+Rn(x,y)

多元函数的泰勒级数

如果函数f(xn)f(x^n)f(xn)x0nx_0^nx0n处具有nnn阶偏导数,其中n=1,2,3,⋯n=1,2,3, \cdotsn=1,2,3,,那么存在x0nx_0^nx0n的一个领域,对于该邻域内的任一 xnx^nxn,有
f(x1,x2,x3,⋯ ,xn)=f(x01,x02,x03,⋯ ,x0n)+∑i=1n(xi−x0i)fxi′(x01,x02,x03,⋯ ,x0n)+12!∑i,j=1n(xi−x0i)(xj−x0j)fij′′(x01,x02,x03,⋯ ,x0n)+Rn(xn) \begin{aligned} f(x^1, x^2, x^3,\cdots, x^n) = & f(x_0^1, x_0^2, x_0^3,\cdots, x_0^n)+ \\ & \sum_{i=1}^n(x^i-x_0^i)f_{x^i}'(x_0^1, x_0^2, x_0^3,\cdots, x_0^n) + \\ &\frac{1}{2!}\sum_{i,j=1}^n(x^i-x_0^i)(x^j-x_0^j)f_{ij}''(x_0^1, x_0^2, x_0^3,\cdots, x_0^n)+ \\ & R_n(x^n) \end{aligned} f(x1,x2,x3,,xn)=f(x01,x02,x03,,x0n)+i=1n(xix0i)fxi(x01,x02,x03,,x0n)+2!1i,j=1n(xix0i)(xjx0j)fij(x01,x02,x03,,x0n)+Rn(xn)

矢量函数的泰勒展开

对于矢量函数F⃗(r⃗)\vec{F}(\vec{r})F(r),可将其看成三元函数F⃗(x,y,z)\vec{F}(x, y, z)F(x,y,z),根据上面的多元函数的泰勒级数,可以得到矢量函数的泰勒展开式为
F⃗(r⃗)=F⃗(x,y,z)=F⃗(x0,y0,z0)+(x−x0)∂F⃗∂x+(y−y0)∂F⃗∂y+(z−z0)∂F⃗∂z+Rn(x,y,z)=F⃗(r⃗0)+[(r⃗−r⃗0)⋅∇]F⃗+Rn(r⃗) \begin{aligned} \vec{F}(\vec{r})= &\vec{F}(x,y,z) \\ =&\vec{F}(x_0,y_0,z_0)+(x-x_0)\frac{\partial \vec{F}}{\partial x}+(y-y_0)\frac{\partial \vec{F}}{\partial y}+(z-z_0)\frac{\partial \vec{F}}{\partial z}+R_n(x,y,z) \\ =&\vec{F}(\vec{r}_0) + [(\vec{r}-\vec{r}_0)\cdot \nabla]\vec{F} + R_n(\vec{r}) \end{aligned} F(r)===F(x,y,z)F(x0,y0,z0)+(xx0)xF+(yy0)yF+(zz0)zF+Rn(x,y,z)F(r0)+[(rr0)]F+Rn(r)

将泰勒级数写成矩阵形式

f(X)=f(X0)+[∇f(X0)]T+12![X−Xk]TH(X0)(X−X0)+Rn(X) f(\bm{X})=f(\bm{X}_0)+[\nabla f(\bm{X}_0)]^T+\frac{1}{2!}[\bm{X}-\bm{X}_k]^TH(\bm{X}_0)(\bm{X}-\bm{X}_0)+R_n(\bm{X}) f(X)=f(X0)+[f(X0)]T+2!1[XXk]TH(X0)(XX0)+Rn(X)

其中
H(X0)=[∂2f(X0)∂x12∂2f(X0)∂x1x2⋯∂2f(X0)∂x1xn∂2f(X0)∂x2x1∂2f(X0)∂x22⋯∂2f(X0)∂x2xn⋮⋮⋱⋮∂2f(X0)∂xnx1∂2f(X0)∂xnx2⋯∂2f(X0)∂xn2] H(\bm{X}_0)= \begin{bmatrix} \frac{\partial ^2 f(\bm{X}_0)}{\partial x_1^2} & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_1 x_2} & \cdots & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_1 x_n} \\ \frac{\partial ^2 f(\bm{X}_0)}{\partial x_2 x_1} & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_2^2} & \cdots & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_2 x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial ^2 f(\bm{X}_0)}{\partial x_n x_1} & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_n x_2} & \cdots & \frac{\partial ^2 f(\bm{X}_0)}{\partial x_n^2} \\ \end{bmatrix} H(X0)=x122f(X0)x2x12f(X0)xnx12f(X0)x1x22f(X0)x222f(X0)xnx22f(X0)x1xn2f(X0)x2xn2f(X0)xn22f(X0)

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值