Problem Description
soda has a set S with n integers {1,2,…,n}.
A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are
key set.
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤105),
indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤109), the number of integers in the set.
The first line contains an integer n (1≤n≤109), the number of integers in the set.
Output
For each test case, output the number of key sets modulo 1000000007.
Sample Input
4 1 2 3 4
Sample Output
0 1 3 7
给你一个1-n的集合,问你有多少个子集的元素和为偶数
假设偶数有a个,奇数有b个,总数为n:
偶:C(0, a)+ C(1 , a)....... + C(a, a) = 2 ^ a
奇:C(0, b)+ C(2 , b)....... + C(b, b) = 2 ^ (b - 1)
all = 偶 * 奇 - 1(奇偶中都不选的情况);
---> all = 2 ^ (a + b - 1)- 1 = 2 ^ (n - 1) -1
#include <iostream>
#include <cstdio>
#include <vector>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef long long ll;
char ma[1100][1100];
int ln, lm;
const int mod = 1000000007;
ll pow_mod(int a,int n)
{
if(n == 0)
return 1;
ll x = pow_mod(a,n/2);
ll ans = (ll)x*x%mod;
if(n %2 == 1)
ans = ans *a % mod;
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
ll sum1 = (pow_mod(2,n-1)-1)%mod;
printf("%I64d\n",sum1);
}
return 0;
}