https://leetcode.com/problems/find-k-pairs-with-smallest-sums/
You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k.
Define a pair (u,v) which consists of one element from the first array and one element from the second array.
Find the k pairs (u1,v1),(u2,v2) ...(uk,vk) with the smallest sums.
Example 1:
Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3 Output: [[1,2],[1,4],[1,6]] Explanation: The first 3 pairs are returned from the sequence: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]Example 2:
Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2 Output: [1,1],[1,1] Explanation: The first 2 pairs are returned from the sequence: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]Example 3:
Input: nums1 = [1,2], nums2 = [3], k = 3 Output: [1,3],[2,3] Explanation: All possible pairs are returned from the sequence: [1,3],[2,3]
逻辑很简单,但是实现有一些关于stl的trivial的细节
优先级队列priority_queue<>的第三个模板参数,必须是仿函数
class Solution {
public:
class myComparison{
public:
bool operator()(pair<int, int> &P1, pair<int, int> &P2) const {
return ((P1.first+P1.second) <= (P2.first+P2.second));
}
};
vector<pair<int, int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
priority_queue<pair<int, int>, vector<pair<int, int>>, myComparison> PQ;
for(int i = 0; i < nums1.size(); ++i){
for(int j = 0; j < nums2.size(); ++j){
pair<int, int> tem(nums1[i], nums2[j]);
if(PQ.size() < k) PQ.push(tem);
else{
pair<int, int> peek(PQ.top());
if(myComparison()(tem, peek)){
PQ.pop();
PQ.push(tem);
}else{
break;
}
}
}
}
vector<pair<int, int>> result;
while(!PQ.empty()){
result.push_back(PQ.top());
PQ.pop();
}
return result;
}
};
看到了别人的做法,他的遍历方法很酷,充分利用了两个vector的有序性,也防止了重复访问的情况。
直观上可以理解为一个三角形,每一层的二元组的两个数的和相同,向下延伸一层的时候就相当于把当前层向左下方平移一格,再在新层的最右侧添加一个结点。
class Solution {
public:
vector<pair<int, int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
vector<pair<int,int>> result;
if (nums1.empty() || nums2.empty() || k <= 0)
return result;
auto comp = [&nums1, &nums2](pair<int, int> a, pair<int, int> b) {
return nums1[a.first] + nums2[a.second] > nums1[b.first] + nums2[b.second];};
priority_queue<pair<int, int>, vector<pair<int, int>>, decltype(comp)> min_heap(comp);
min_heap.emplace(0, 0);
while(k-- > 0 && min_heap.size())
{
auto idx_pair = min_heap.top(); min_heap.pop();
result.emplace_back(nums1[idx_pair.first], nums2[idx_pair.second]);
if (idx_pair.first + 1 < nums1.size())
min_heap.emplace(idx_pair.first + 1, idx_pair.second);
if (idx_pair.first == 0 && idx_pair.second + 1 < nums2.size())
min_heap.emplace(idx_pair.first, idx_pair.second + 1);
}
return result;
}
};