The classical Papers about GAN

The classical Papers about adversarial nets

The First paper

✅ [Generative Adversarial Nets] [Paper][Code](the first paper about it)

Unclassified

✅ [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] [Paper][Code]

✅ [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] [Paper][Code](Gan with convolutional networks)(ICLR)

✅ [Adversarial Autoencoders] [Paper][Code]

✅ [Generating Images with Perceptual Similarity Metrics based on Deep Networks] [Paper]

✅ [Generating images with recurrent adversarial networks] [Paper][Code]

✅ [Generative Visual Manipulation on the Natural Image Manifold] [Paper][Code]

✅ [Generative Adversarial Text to Image Synthesis] [Paper][Code][code]

✅ [Learning What and Where to Draw] [Paper][Code]

✅ [Adversarial Training for Sketch Retrieval] [Paper]

✅ [Generative Image Modeling using Style and Structure Adversarial Networks] [Paper][Code]

✅ [Generative Adversarial Networks as Variational Training of Energy Based Models] [Paper](ICLR 2017)

✅ [Adversarial Training Methods for Semi-Supervised Text Classification] [Paper][Note]( Ian Goodfellow Paper)

✅ [Learning from Simulated and Unsupervised Images through Adversarial Training] [Paper][code](Apple paper)

✅ [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] [Paper][Code]

✅ [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] [Paper][Code]

✅ [Adversarial Feature Learning] [Paper]

Ensemble

✅ [AdaGAN: Boosting Generative Models] [Paper][[Code]](Google Brain)

Clustering

✅ [Unsupervised Learning Using Generative Adversarial Training And Clustering] [Paper][Code](ICLR)✅ [Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks] [Paper](ICLR)

Image blending

✅ [GP-GAN: Towards Realistic High-Resolution Image Blending] [Paper][Code]

Image Inpainting

✅ [Semantic Image Inpainting with Perceptual and Contextual Losses] [Paper][Code](CVPR 2017)

✅ [Context Encoders: Feature Learning by Inpainting] [Paper][Code]

✅ [Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks] [Paper]

✅ [Generative face completion] [Paper][code](CVPR2017)

✅ [Globally and Locally Consistent Image Completion] [MainPAGE](SIGGRAPH 2017)

Joint Probability

✅ [Adversarially Learned Inference][Paper][Code]

Super-Resolution

✅ [Image super-resolution through deep learning ][Code](Just for face dataset)

✅ [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] [Paper][Code](Using Deep residual network)

✅ [EnhanceGAN] [Docs][[Code]]

Disocclusion

✅ [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] [Paper]

Semantic Segmentation

✅ [Semantic Segmentation using Adversarial Networks] [Paper](soumith’s paper)

Object Detection

✅ [Perceptual generative adversarial networks for small object detection] [[Paper]](CVPR 2017)

✅ [A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection] [Paper][code](CVPR2017)

RNN

✅ [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] [Paper][Code]

Conditional adversarial

✅ [Conditional Generative Adversarial Nets] [Paper][Code]

✅ [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] [Paper][Code][Code]

✅ [Conditional Image Synthesis With Auxiliary Classifier GANs] [Paper][Code](GoogleBrain ICLR 2017)

✅ [Pixel-Level Domain Transfer] [Paper][Code]

✅ [Invertible Conditional GANs for image editing] [Paper][Code]

✅ [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] [Paper][Code]

✅ [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] [Paper][Code]

Video Prediction

✅ [Deep multi-scale video prediction beyond mean square error] [Paper][Code](Yann LeCun’s paper)

✅ [Unsupervised Learning for Physical Interaction through Video Prediction] [Paper](Ian Goodfellow’s paper)

✅ [Generating Videos with Scene Dynamics] [Paper][Web][Code]

Texture Synthesis & style transfer

✅ [Precomputed real-time texture synthesis with markovian generative adversarial networks] [Paper][Code](ECCV 2016)

Image translation

✅ [UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION] [Paper][Code]

✅ [Image-to-image translation using conditional adversarial nets] [Paper][Code][Code]

✅ [Learning to Discover Cross-Domain Relations with Generative Adversarial Networks] [Paper][Code]

✅ [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] [Paper][Code]

✅ [Unsupervised Image-to-Image Translation with Generative Adversarial Networks] [Paper]

✅ [Unsupervised Image-to-Image Translation Networks] [Paper]

GAN Theory

✅ [Energy-based generative adversarial network] [Paper][Code](Lecun paper)

✅ [Improved Techniques for Training GANs] [Paper][Code](Goodfellow’s paper)

✅ [Mode Regularized Generative Adversarial Networks] [Paper](Yoshua Bengio , ICLR 2017)

✅ [Improving Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio , ICLR 2017)

✅ [Sampling Generative Networks] [Paper][Code]

✅ [Mode Regularized Generative Adversarial Networkss] [Paper]( Yoshua Bengio’s paper)

✅ [How to train Gans] [Docu]

✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)

✅ [Unrolled Generative Adversarial Networks] [Paper][Code](ICLR 2017)

✅ [Least Squares Generative Adversarial Networks] [Paper][Code]

✅ [Wasserstein GAN] [Paper][Code]

✅ [Improved Training of Wasserstein GANs] [Paper][Code](The improve of wgan)

✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper]

3D

✅ [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] [Paper][Web][code](2016 NIPS)

✅ [Transformation-Grounded Image Generation Network for Novel 3D View Synthesis] [Web](CVPR 2017)

MUSIC

✅ [MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions] [Paper][HOMEPAGE]

Face Generative and Editing

✅ [Autoencoding beyond pixels using a learned similarity metric] [Paper][code]

✅ [Coupled Generative Adversarial Networks] [Paper][Caffe Code][Tensorflow Code](NIPS)

✅ [Invertible Conditional GANs for image editing] [Paper][Code]

✅ [Learning Residual Images for Face Attribute Manipulation] [Paper][code](CVPR 2017)

✅ [Neural Photo Editing with Introspective Adversarial Networks] [Paper][Code](ICLR 2017)

✅ [Neural Face Editing with Intrinsic Image Disentangling] [Paper](CVPR 2017)

For discrete distributions

✅ [Maximum-Likelihood Augmented Discrete Generative Adversarial Networks] [Paper]

✅ [Boundary-Seeking Generative Adversarial Networks] [Paper]

✅ [GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution] [Paper]

Adversarial Examples

✅ [SafetyNet: Detecting and Rejecting Adversarial Examples Robustly] [Paper]

Project

✅ [cleverhans] [Code](A library for benchmarking vulnerability to adversarial examples)

✅ [reset-cppn-gan-tensorflow] [Code](Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)

✅ [HyperGAN] [Code](Open source GAN focused on scale and usability)

Blogs

AuthorAddress
inFERENCeAdversarial network
inFERENCeInfoGan
distillDeconvolution and Image Generation
yingzhenliGan theory
OpenAIGenerative model

Other

✅ [1] http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf (NIPS Goodfellow Slides)[Chinese Trans][details]

✅ [2] [PDF](NIPS Lecun Slides)

转自:https://github.com/zhangqianhui/AdversarialNetsPapers

The classical pipeline of data processing typically consists of several stages or phases. These phases are: 1. Data Collection: This is the first stage of the pipeline where data is collected from various sources such as databases, web pages, APIs, and other sources. The intention of this phase is to gather data that is relevant to the problem being solved. 2. Data Pre-processing: In this stage, the collected data is cleaned, transformed, and organized in a structured format. The intention of this phase is to ensure that the data is consistent and ready for analysis. 3. Data Analysis: In this stage, the pre-processed data is analyzed using various statistical and machine learning techniques to extract valuable insights. The intention of this phase is to identify patterns, trends, and anomalies in the data. 4. Data Visualization: In this stage, the analyzed data is visualized using graphs, charts, and other visual aids. The intention of this phase is to communicate the insights and findings to stakeholders in an easy-to-understand format. 5. Decision Making: In this stage, the insights and findings obtained from the previous stages are used to make informed decisions. The intention of this phase is to take actions based on the insights and findings to improve business processes or solve the problem at hand. Overall, the classical pipeline of data processing is intended to turn raw data into actionable insights that can be used to improve business processes, solve problems, and drive innovation.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值