http://acm.hdu.edu.cn/showproblem.php?pid=2767
题意:给你n个命题,m个推导,求增加多少条推导就能使命题两两等价。
ps:这里终于看懂九野巨的模板了,刚开始就是边的输入方式不懂,怎么模拟都不对。后来一想,这尼玛是头插法啊,我就说怎么似曾相识。看来我数据结构水的一比啊。也好,让自己复习下数据结构。
思路:命题转化为节点,推导转化为边,求再增加多少条边就可以将其变为强连通图。不同于上一道题判断是否为连通图,这题求的是添加的边数。这里采用了把强连通分量转化为缩点,这样就变成了有向无环图。连接有向无环图中入度为0与出度为0的点,相当于入度为0的有root个点,出度为0的有leaf个点,统计数量。因为肯定有剩余的,而剩余的乱连就行,而乱连也不会影响其连通性,所以要求最大值。关于缩点详解,看的这篇博客。主要就是将其染色,不同颜色的累加到需要连接的数组中,便于统计。
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <stack>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 100010;
const int INF = 1e8;
stack<int>S;
int dfn[N], low[N], head[N], Belong[N], in[N], out[N], countt, time, n, m, pos;
bool instack[N];
struct Edge
{
int to, next;
}edge[N];
void add(int u, int v)
{
edge[pos].to = v;
edge[pos].next = head[u];
head[u] = pos++;
}
void init()
{
time = countt = pos = 0;
memset(in, 0, sizeof(in));
memset(out, 0, sizeof(out));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(head, -1, sizeof(head));
memset(instack, false, sizeof(instack));
}
void Tarjan(int u)
{
int v;
dfn[u] = low[u] = ++time;
instack[u] = true;
S.push(u);
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(dfn[v] == 0)
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(instack[v] == 1)
{
low[u] = min(low[u], dfn[v]);
}
}
if(dfn[u] == low[u])
{
countt ++;
do
{
v = S.top();
S.pop();
instack[v] = false;
Belong[v] = countt;
}while(u != v);
}
}
int main()
{
// freopen("in.txt", "r", stdin);
int t, u, v;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
init();
for(int i = 1; i <= m; i++)
{
scanf("%d%d", &u, &v);
add(u, v);
}
//缩点
for(int i = 1; i <= n; i++)
{
if(dfn[i] == 0)
Tarjan(i);
}
if(countt == 1)
{
printf("0\n");
continue;
}
for(int i = 1; i <= n; i++)
{
for(int k = head[i]; k != -1; k = edge[k].next)
{
int j = edge[k].to;
if(Belong[i] != Belong[j])
{
out[Belong[i]]++;
in[Belong[j]]++;
}
}
}
//找叶子和根度为0的数量
int root = 0, leaf = 0;
for(int i = 1; i <= countt; i++)
{
if(in[i] == 0) root++;
if(out[i] == 0) leaf++;
}
printf("%d\n", max(root, leaf));
}
return 0;
}
顺便贴上hdu3836,代码几乎一毛一样。
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <stack>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 100010;
const int INF = 1e8;
stack<int>S;
int dfn[N], low[N], head[N], Belong[N], in[N], out[N], countt, time, n, m, pos;
bool instack[N];
struct Edge
{
int to, next;
}edge[N];
void add(int u, int v)
{
edge[pos].to = v;
edge[pos].next = head[u];
head[u] = pos++;
}
void init()
{
time = countt = pos = 0;
memset(in, 0, sizeof(in));
memset(out, 0, sizeof(out));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(head, -1, sizeof(head));
memset(instack, false, sizeof(instack));
}
void Tarjan(int u)
{
int v;
dfn[u] = low[u] = ++time;
instack[u] = true;
S.push(u);
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(dfn[v] == 0)
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(instack[v] == 1)
{
low[u] = min(low[u], dfn[v]);
}
}
if(dfn[u] == low[u])
{
countt ++;
do
{
v = S.top();
S.pop();
instack[v] = false;
Belong[v] = countt;
}while(u != v);
}
}
int main()
{
// freopen("in.txt", "r", stdin);
int u, v;
while(~scanf("%d%d", &n, &m))
{
init();
for(int i = 1; i <= m; i++)
{
scanf("%d%d", &u, &v);
add(u, v);
}
//缩点
for(int i = 1; i <= n; i++)
{
if(dfn[i] == 0)
Tarjan(i);
}
if(countt == 1)
{
printf("0\n");
}
else
{
for(int i = 1; i <= n; i++)
{
for(int k = head[i]; k != -1; k = edge[k].next)
{
int j = edge[k].to;
if(Belong[i] != Belong[j])
{
out[Belong[i]]++;
in[Belong[j]]++;
}
}
}
//找叶子和根度为0的数量
int root = 0, leaf = 0;
for(int i = 1; i <= countt; i++)
{
if(in[i] == 0) root++;
if(out[i] == 0) leaf++;
}
printf("%d\n", max(root, leaf));
}
}
return 0;
}