线性代数:线性方程组

本文探讨了线性方程组的概念,包括等价性和行等价矩阵的定义。介绍了行简化过程,强调每个矩阵有且仅有一个简化行阶梯形矩阵,并解释了主元位置和主元列的概念。同时,阐述了线性方程组通解的表示方法,涉及基本变量和自由变量。此外,还讨论了向量方程,说明如何通过向量的线性组合来表示解集,以及判断一个向量是否属于特定向量的张成空间的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

##线性方程组Linear Equation

若两个线性方程组有相同的解集(solution set),称它们为等价(equivalent)的。

线性方程组的解的情况 称线性方程组为
无解 不相容(inconsistent)
有唯一解 相容(consistent)
有无穷多解 相容
初等行变换(elementary row operation)
倍加变换:把某一行换成它本身与另一行的倍数的和
对换变换:把两行对换
倍乘变换:把某一行的所有元素乘以同一个非零数

行变换可施行于任何矩阵(matrix)。

若一个矩阵可以经过一系列行初等变换成为另一个矩阵,称两个矩阵为行等价的。

若两个线性方程组的增广矩阵(augmented matrix)是行等价的,则它们具有相同的解集。


##行简化Row Reduction与阶梯形Echelon Form

行阶梯形矩阵(REF)性质
每一非零行在每一零行之上
每一行的先导元素(leading entry)所在的列位于前一行先导元素的右边
每一先导元素所在列下方的元素都是零
简化行阶梯形矩阵(RREF)性质
每一非零行在每一零行之上
每一行的先导元素所在的列位于前一行先导元素的右边
每一先导元素所在列下方的元素都是零
每一非零行的先导元素是1
每一先导元素1是该元素所在列的唯一非零元素

每个矩阵行等价于唯一的简化行阶梯形矩阵。

矩阵的主元位置(pivot position)为对应阶梯形的先导元素的位置,主元列是含有主元位置的列。

行化简算法
第一步:从最左边的非零列开始选取主元列
第二步:从主元列中选取一个非零元作为主元,对换变换将主元移至主元位置
第三步:倍加变换将主元下面的元素变成0
第四步:对剩下的子矩阵进行上述三步处理
第五步:从最右边的主元开始,倍乘变换将主元变成1,倍加变换将主元上方元素变成0

第一至四步为向前步骤,第五步为向后步骤。

用基本变量(basic variable)和自由变量(free variable)表示的解称为方程组的通解(general solution)。

存在性与唯一性定理(判断线性方程组是否相容以及解的个数)
线性方程组相容的充要条件是增广矩阵的最右列不是主元列
若线性方程组相容,当没有自由变量时,有唯一解;当至少有一个自由变量时,有无穷多解
解线性方程组
第一步:写出增广矩阵
第二步:将增广矩阵化为阶梯形,判断方程组是否有解
第三步:将增广矩阵化为简化阶梯形,写出通解

##向量方程Vector Equation

仅含一列的矩阵称为列向量(column vector)。

R n R^n Rn中向量的运算
u+v=v+u
u+v)+w=u+(v+w
u+0=u
c(d u)=(cd)u
1 u=u
c(u+v)=c u+c v
(c+d)u=c u+d u
线性组合
y = c 1 v 1 + ⋯ + c p v p y=c_1v_1+\cdots+c_pv_p y=c1v1++cp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值