Python打卡训练营学习记录Day18

import pandas as pd    #用于数据处理和分析,可处理表格数据。
import numpy as np     #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt    #用于绘制各种类型的图表
import seaborn as sns   #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import StratifiedKFold, cross_validate # 引入分层 K 折和交叉验证工具
from sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report
import time
import warnings
warnings.filterwarnings("ignore")
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
data  = pd.read_csv('heart.csv')
# 提取连续值特征
continuous_features = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
# 提取离散值特征
discrete_features = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal', 'target']
# 使用映射字典进行转换
mapping = {
    'cp': {0: 0, 1: 1, 2: 2, 3: 3},
    'restecg': {0: 0, 1: 1, 2: 2},
    'slope': {0: 0, 1: 1, 2: 2},
    'ca': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4},
    'thal': {0: 0, 1: 1, 2: 2, 3: 3}
}
for feature, mapping in mapping.items():
    data[feature] = data[feature].map(mapping)
# Purpose 独热编码
columns_to_encode = ['sex','fbs','exang']
data = pd.get_dummies(data, columns=columns_to_encode, drop_first=True)
data2 = pd.read_csv("heart.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
    if i not in data2.columns:
        list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
    data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
# 划分训练集和测试机
X = data.drop(['target'], axis=1)  # 特征,axis=1表示按列删除
y = data['target']  # 标签
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import matplotlib.pyplot as plt
import seaborn as sns
# 标准化数据(聚类前通常需要标准化)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 评估不同 k 值下的指标
k_range = range(2, 11)  # 测试 k 从 2 到 10
inertia_values = []
silhouette_scores = []
ch_scores = []
db_scores = []
for k in k_range:
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans_labels = kmeans.fit_predict(X_scaled)
    inertia_values.append(kmeans.inertia_)  # 惯性(肘部法则)
    silhouette = silhouette_score(X_scaled, kmeans_labels)  # 轮廓系数
    silhouette_scores.append(silhouette)
    ch = calinski_harabasz_score(X_scaled, kmeans_labels)  # CH 指数
    ch_scores.append(ch)
    db = davies_bouldin_score(X_scaled, kmeans_labels)  # DB 指数
    db_scores.append(db)
    print(f"k={k}, 惯性: {kmeans.inertia_:.2f}, 轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}")
# 绘制评估指标图
plt.figure(figsize=(15, 10))
# 肘部法则图(Inertia)
plt.subplot(2, 2, 1)
plt.plot(k_range, inertia_values, marker='o')
plt.title('肘部法则确定最优聚类数 k(惯性,越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('惯性')
plt.grid(True)
# 轮廓系数图
plt.subplot(2, 2, 2)
plt.plot(k_range, silhouette_scores, marker='o', color='orange')
plt.title('轮廓系数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('轮廓系数')
plt.grid(True)
# CH 指数图
plt.subplot(2, 2, 3)
plt.plot(k_range, ch_scores, marker='o', color='green')
plt.title('Calinski-Harabasz 指数确定最优聚类数 k(越大越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('CH 指数')
plt.grid(True)
# DB 指数图
plt.subplot(2, 2, 4)
plt.plot(k_range, db_scores, marker='o', color='red')
plt.title('Davies-Bouldin 指数确定最优聚类数 k(越小越好)')
plt.xlabel('聚类数 (k)')
plt.ylabel('DB 指数')
plt.grid(True)
plt.tight_layout()
plt.show()
# 提示用户选择 k 值
selected_k = 4
# 使用选择的 k 值进行 KMeans 聚类
kmeans = KMeans(n_clusters=selected_k, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)
X['KMeans_Cluster'] = kmeans_labels
# 使用 PCA 降维到 2D 进行可视化
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
# KMeans 聚类结果可视化
plt.figure(figsize=(6, 5))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=kmeans_labels, palette='viridis')
plt.title(f'KMeans Clustering with k={selected_k} (PCA Visualization)')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()
# 打印 KMeans 聚类标签的前几行
print(f"KMeans Cluster labels (k={selected_k}) added to X:")
print(X[['KMeans_Cluster']].value_counts())
print(X.columns)


x1= X.drop('KMeans_Cluster',axis=1) # 删除聚类标签列
y1 = X['KMeans_Cluster']
# 构建随机森林,用shap重要性来筛选重要性
import shap
import numpy as np
from sklearn.ensemble import RandomForestClassifier  # 随机森林分类器
model = RandomForestClassifier(n_estimators=100, random_state=42)  # 随机森林模型
model.fit(x1, y1)  # 训练模型,此时无需在意准确率 直接全部数据用来训练了
shap.initjs()
# 初始化 SHAP 解释器
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(x1) # 这个计算耗时
print(shap_values.shape) # 第一维是样本数,第二维是特征数,第三维是类别数
# --- 1. SHAP 特征重要性条形图 (Summary Plot - Bar) ---
print("--- 1. SHAP 特征重要性条形图 ---")
shap.summary_plot(shap_values[:, :, 0], x1, plot_type="bar",show=False)  #  这里的show=False表示不直接显示图形,这样可以继续用plt来修改元素,不然就直接输出了
plt.title("SHAP Feature Importance (Bar Plot)")
plt.show()
# 此时判断一下这几个特征是离散型还是连续型
import pandas as pd
selected_features = ['sex_1', 'slope',
                     'thalach', 'age','oldpeak','restecg','chol']

for feature in selected_features:
    unique_count = X[feature].nunique() # 唯一值指的是在某一列或某个特征中,不重复出现的值
    # 连续型变量通常有很多唯一值,而离散型变量的唯一值较少
    print(f'{feature} 的唯一值数量: {unique_count}')
    if unique_count < 10:  # 这里 10 是一个经验阈值,可以根据实际情况调整
        print(f'{feature} 可能是离散型变量')
    else:
        print(f'{feature} 可能是连续型变量')
selected_features = ['sex_1', 'slope','restecg']
# X["Purpose_debt consolidation"].value_counts() # 统计每个唯一值的出现次数
import matplotlib.pyplot as plt

# 总样本中的三个重要性的特征分布图
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()

for i, feature in enumerate(selected_features):
    axes[i].hist(X[feature], bins=20)
    axes[i].set_title(f'Histogram of {feature}')
    axes[i].set_xlabel(feature)
    axes[i].set_ylabel('Frequency')

plt.tight_layout()
plt.show()
print(X[['KMeans_Cluster']].value_counts())
# 分别筛选出每个簇的数据
X_cluster0 = X[X['KMeans_Cluster'] == 0]
X_cluster1 = X[X['KMeans_Cluster'] == 1]
X_cluster2 = X[X['KMeans_Cluster'] == 2]
X_cluster3 = X[X['KMeans_Cluster'] == 3]
# 先绘制簇0的分布图

import matplotlib.pyplot as plt

# 总样本中的前四个重要性的特征分布图
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()

for i, feature in enumerate(selected_features):
    axes[i].hist(X_cluster0[feature], bins=20)
    axes[i].set_title(f'Histogram of {feature}')
    axes[i].set_xlabel(feature)
    axes[i].set_ylabel('Frequency')

plt.tight_layout()
plt.show()
# 再绘制簇1的分布图

import matplotlib.pyplot as plt

# 总样本中的前三个重要性的特征分布图
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()

for i, feature in enumerate(selected_features):
    axes[i].hist(X_cluster1[feature], bins=20)
    axes[i].set_title(f'Histogram of {feature}')
    axes[i].set_xlabel(feature)
    axes[i].set_ylabel('Frequency')

plt.tight_layout()
plt.show()
# 再绘制簇2的分布图

import matplotlib.pyplot as plt

# 总样本中的前三个重要性的特征分布图
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()

for i, feature in enumerate(selected_features):
    axes[i].hist(X_cluster2[feature], bins=20)
    axes[i].set_title(f'Histogram of {feature}')
    axes[i].set_xlabel(feature)
    axes[i].set_ylabel('Frequency')

plt.tight_layout()
plt.show()
# 再绘制簇3的分布图

import matplotlib.pyplot as plt

# 总样本中的前三个重要性的特征分布图
fig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()

for i, feature in enumerate(selected_features):
    axes[i].hist(X_cluster3[feature], bins=20)
    axes[i].set_title(f'Histogram of {feature}')
    axes[i].set_xlabel(feature)
    axes[i].set_ylabel('Frequency')

plt.tight_layout()
plt.show()


 

 

 

 

 

 

 

 

@浙大疏锦行 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值