💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
💥1 概述
稀疏感知图像和体数据恢复是一种用于恢复损坏、噪声或不完整的图像和体数据的技术。它利用了信号的稀疏性,即信号在某种基础下可以用较少的非零系数表示,从而实现高质量的恢复。
在进行稀疏感知图像和体数据恢复的研究时,需要定义一些系统对象。这些对象描述了系统中的各个组成部分和它们之间的关系,有助于实现恢复算法的设计和实现。
系统对象的定义包括以下几个方面:
1. 输入数据对象:这个对象描述了输入的损坏、噪声或不完整的图像或体数据。它可以是一个图像矩阵、一个体数据的三维数组或其他适当的数据结构。
2. 稀疏表示对象:这个对象描述了信号的稀疏表示。它可以是一个稀疏矩阵、一个稀疏系数向量或其他适当的数据结构。稀疏表示对象是恢复算法的关键部分,它通过选择适当的基础和优化方法来实现信号的稀疏表示。
3. 恢复算法对象:这个对象描述了用于恢复稀疏感知图像和体数据的算法。它可以是一个迭代算法、一个优化算法或其他适当的算法。恢复算法对象通常包括对输入数据对象和稀疏表示对象的处理步骤,以及对恢复结果的评估和优化步骤。
4. 输出数据对象:这个对象描述了恢复后的图像或体数据。它可以是一个恢复后的图像矩阵、一个恢复后的体数据的三维数组或其他适当的数据结构。
通过定义这些系统对象,研究人员可以更好地理解稀疏感知图像和体数据恢复的过程,并设计出高效、准确的恢复算法。这些系统对象的定义还可以为稀疏感知图像和体数据恢复的实际应用提供指导,例如医学图像处理、计算机视觉和图像压缩等领域。
一、引言
稀疏感知图像和体数据恢复是一种用于恢复损坏、噪声或不完整的图像和体数据的技术。它利用了信号的稀疏性,即信号在某种基础下可以用较少的非零系数表示,从而实现高质量的恢复。随着计算机硬件和算法的不断发展,稀疏感知技术在图像和体数据恢复领域的应用日益广泛。本文旨在深入研究稀疏感知图像和体数据恢复的系统对象,包括其定义、功能、相互关系以及应用场景,为相关领域的研究人员提供一个全面的视角。
二、系统对象定义与功能
在稀疏感知图像和体数据恢复中,需要定义一些系统对象来描述系统中的各个组成部分和它们之间的关系。这些系统对象主要包括:
-
输入数据对象
- 定义:描述输入的损坏、噪声或不完整的图像或体数据。
- 数据结构:可以是一个图像矩阵(对于二维图像)或一个体数据的三维数组(对于三维体数据)。此外,还可以是其他适当的数据结构,如包含图像或体数据信息的文件。
- 功能:作为稀疏感知图像和体数据恢复算法的起点,提供待恢复的原始数据。
-
稀疏表示对象
- 定义:描述信号的稀疏表示。
- 数据结构:可以是一个稀疏矩阵、一个稀疏系数向量或其他适当的数据结构。
- 功能:通过选择适当的基础和优化方法来实现信号的稀疏表示。这是恢复算法的关键部分,有助于减少噪声和冗余信息,从而提高恢复质量。
-
恢复算法对象
- 定义:描述用于恢复稀疏感知图像和体数据的算法。
- 算法类型:可以是一个迭代算法、一个优化算法或其他适当的算法。这些算法通常包括对输入数据对象和稀疏表示对象的处理步骤,以及对恢复结果的评估和优化步骤。
- 功能:根据输入数据和稀疏表示,通过一系列计算步骤得到恢复后的图像或体数据。
-
输出数据对象
- 定义:描述恢复后的图像或体数据。
- 数据结构:可以是一个恢复后的图像矩阵(对于二维图像)或一个恢复后的体数据的三维数组(对于三维体数据)。此外,还可以是其他适当的数据结构,如包含恢复后图像或体数据信息的文件。
- 功能:作为稀疏感知图像和体数据恢复算法的终点,提供恢复后的高质量图像或体数据。
三、系统对象之间的关系
在稀疏感知图像和体数据恢复中,系统对象之间密切相关,共同构成了恢复算法的整体框架。具体来说:
- 输入数据对象提供了待恢复的原始数据,是恢复算法的起点。
- 稀疏表示对象通过选择适当的基础和优化方法实现信号的稀疏表示,为恢复算法提供关键支持。
- 恢复算法对象根据输入数据和稀疏表示进行一系列计算步骤,得到恢复后的数据。
- 输出数据对象提供恢复后的高质量图像或体数据,是恢复算法的终点。
四、应用场景与挑战
稀疏感知图像和体数据恢复技术在多个领域具有广泛的应用前景,包括:
- 医学图像处理:提高医学图像的诊断准确性,如MRI或CT扫描中的部分数据缺失或受到噪声影响时的恢复。
- 计算机视觉:改善图像识别和目标检测的性能,如遥感图像中缺失条带的恢复。
- 图像压缩:实现高效的数据压缩和传输,通过稀疏表示减少数据量。
然而,该技术也面临一些挑战:
- 先验知识的融合:现有算法通常集中于某个先验知识,如何将多个有效的先验知识进行融合,以更有效地约束和描述图像,是一个亟待解决的问题。
- 优化算法效率:某些优化算法需要大量迭代,甚至迭代之中还有内部迭代,导致计算复杂度很高。开发新的优化算法框架或采用分布式并行计算,是提高计算性能的有效途径。
- 语义信息的利用:图像的先验知识对于图像恢复有着重要作用,但现有方法很少考虑到图像内容的语义信息。在图像恢复过程中提前考虑到图像内容在语义层级的先验知识,可能可以大大提高图像内容和语义的恢复效果。
五、未来发展方向
随着计算机硬件和算法的不断发展,稀疏感知图像和体数据恢复技术将会得到更广泛的应用,并进一步提高图像和体数据的恢复效果。未来的研究可以进一步探索以下几个方面:
- 更高效的稀疏表示方法:研究更高效的稀疏表示方法,以更好地捕捉图像的内在结构,提高恢复质量。
- 更先进的恢复算法:开发更先进的恢复算法,结合多种稀疏模型或先验信息,以进一步提高恢复性能。
- 与其他技术的结合:将稀疏感知技术与其他先进技术(如深度学习)相结合,以应对更复杂的图像和体数据恢复问题。
📚2 运行结果


部分代码:
%% Create a step monitor system object
% ISTA iteratively approaches to the optimum solution. In order to
% observe the intermediate results, the following class can be used:
%
% * saivdr.utility.StepMonitoringSystem
% Parameters for StepMonitoringSystem
isverbose = true; % Verbose mode
isvisible = true; % Monitor intermediate results
hfig2 = figure(2); % Figure to show the source, observed and result image
hfig2.Name = 'ISTA-based Image Restoration';
% Instantiation of StepMonitoringSystem
import saivdr.utility.StepMonitoringSystem
stepmonitor = StepMonitoringSystem(...
'DataType', 'Image',...
'SourceImage', orgImg,... % Original image
'ObservedImage', obsImg,... % Observed image
'IsMSE', false,... % Switch for MSE evaluation
'IsPSNR', true,... % Switch for PSNR evaluation
'IsSSIM', false,... % Switch for SSIM evaluation
'IsVerbose', isverbose,... % Switch for verbose mode
'IsVisible', isvisible,... % Switch for display intermediate result
'ImageFigureHandle',hfig2); % Figure handle
% Set the object to the ISTA system object
ista.StepMonitor = stepmonitor;
%% Perform ISTA-based image restoration
% STEP method of IstaImRestoration system object, _ista_ , executes
% the ISTA-based image restoration to deblur the observed image.
% As the result, a restored image
%
% $\hat{\mathbf{u}} = \mathbf{D}\hat{\mathbf{y}}$
%
% is obtained.
fprintf('\n ISTA')
resImg = ista.step(obsImg); % STEP method of IstaImRestoration
%% Extract the final evaluation
% The object of StepMonitoringSystem, _stepmonitor_ , stores the
% evaluation values calculated iteratively in ISTA as a vector. The GET
% method of _stepmonitor_ can be used to extract the number of iterations
% and the sequence of PSNRs.
nItr = stepmonitor.nItr;
psnrs = stepmonitor.PSNRs;
psnr_ista = psnrs(nItr);
%% Perform Wiener filtering
% As a reference, let us show a result of Wiener filter.
% Create a step monitor system object for the PSNR evaluation
stepmonitor = StepMonitoringSystem(...
'SourceImage',orgImg,...
'MaxIter', 1,...
'IsMSE', false,...
'IsPSNR', true,...
'IsSSIM', false,...
'IsVisible', false,...
'IsVerbose', isverbose);
% Use the same blur kernel as that applied to the observed image, obsImg
blurKernel = blur.BlurKernel;
% Estimation of noise to signal ratio
nsr = noise_var/var(orgImg(:));
% Wiener filter deconvolution of Image Processing Toolbox
wnfImg = deconvwnr(obsImg, blurKernel, nsr);
% Evaluation
fprintf('\n Wiener')
psnr_wfdc = stepmonitor.step(wnfImg); % STEP method of StepMonitoringSystem
%% Compare deblurring performances
% In order to compare the deblurring performances between two methods,
% ISTA-based deblurring with NSOLT and Wiener filter, let us show
% the original, observed and two results in one figure together.
hfig3 = figure(3);
% Original image x
subplot(2,2,1)
imshow(orgImg)
title('Original image {\bf u}')
% Observed image u
subplot(2,2,2)
imshow(obsImg)
title('Observed image {\bf x}')
% Result u^ of ISTA
subplot(2,2,3)
imshow(resImg)
title(['{\bf u}\^ by ISTA : ' num2str(psnr_ista) ' [dB]'])
% Result u^ of Wiener filter
subplot(2,2,4)
imshow(wnfImg)
title(['{\bf u}\^ by Wiener: ' num2str(psnr_wfdc) ' [dB]'])
%% Create a step monitor system object
% ISTA iteratively approaches to the optimum solution. In order to
% observe the intermediate results, the following class can be used:
%
% * saivdr.utility.StepMonitoringSystem
% Parameters for StepMonitoringSystem
isverbose = true; % Verbose mode
isvisible = true; % Monitor intermediate results
hfig2 = figure(2); % Figure to show the source, observed and result image
hfig2.Name = 'ISTA-based Image Restoration';
% Instantiation of StepMonitoringSystem
import saivdr.utility.StepMonitoringSystem
stepmonitor = StepMonitoringSystem(...
'DataType', 'Image',...
'SourceImage', orgImg,... % Original image
'ObservedImage', obsImg,... % Observed image
'IsMSE', false,... % Switch for MSE evaluation
'IsPSNR', true,... % Switch for PSNR evaluation
'IsSSIM', false,... % Switch for SSIM evaluation
'IsVerbose', isverbose,... % Switch for verbose mode
'IsVisible', isvisible,... % Switch for display intermediate result
'ImageFigureHandle',hfig2); % Figure handle
% Set the object to the ISTA system object
ista.StepMonitor = stepmonitor;
%% Perform ISTA-based image restoration
% STEP method of IstaImRestoration system object, _ista_ , executes
% the ISTA-based image restoration to deblur the observed image.
% As the result, a restored image
%
% $\hat{\mathbf{u}} = \mathbf{D}\hat{\mathbf{y}}$
%
% is obtained.
fprintf('\n ISTA')
resImg = ista.step(obsImg); % STEP method of IstaImRestoration
%% Extract the final evaluation
% The object of StepMonitoringSystem, _stepmonitor_ , stores the
% evaluation values calculated iteratively in ISTA as a vector. The GET
% method of _stepmonitor_ can be used to extract the number of iterations
% and the sequence of PSNRs.
nItr = stepmonitor.nItr;
psnrs = stepmonitor.PSNRs;
psnr_ista = psnrs(nItr);
%% Perform Wiener filtering
% As a reference, let us show a result of Wiener filter.
% Create a step monitor system object for the PSNR evaluation
stepmonitor = StepMonitoringSystem(...
'SourceImage',orgImg,...
'MaxIter', 1,...
'IsMSE', false,...
'IsPSNR', true,...
'IsSSIM', false,...
'IsVisible', false,...
'IsVerbose', isverbose);
% Use the same blur kernel as that applied to the observed image, obsImg
blurKernel = blur.BlurKernel;
% Estimation of noise to signal ratio
nsr = noise_var/var(orgImg(:));
% Wiener filter deconvolution of Image Processing Toolbox
wnfImg = deconvwnr(obsImg, blurKernel, nsr);
% Evaluation
fprintf('\n Wiener')
psnr_wfdc = stepmonitor.step(wnfImg); % STEP method of StepMonitoringSystem
%% Compare deblurring performances
% In order to compare the deblurring performances between two methods,
% ISTA-based deblurring with NSOLT and Wiener filter, let us show
% the original, observed and two results in one figure together.
hfig3 = figure(3);
% Original image x
subplot(2,2,1)
imshow(orgImg)
title('Original image {\bf u}')
% Observed image u
subplot(2,2,2)
imshow(obsImg)
title('Observed image {\bf x}')
% Result u^ of ISTA
subplot(2,2,3)
imshow(resImg)
title(['{\bf u}\^ by ISTA : ' num2str(psnr_ista) ' [dB]'])
% Result u^ of Wiener filter
subplot(2,2,4)
imshow(wnfImg)
title(['{\bf u}\^ by Wiener: ' num2str(psnr_wfdc) ' [dB]'])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]薛明.压缩感知及稀疏性分解在图像复原中的应用研究[D].西安电子科技大学,2011.DOI:CNKI:CDMD:2.2010.083018.
-
uiki Kobayashi, Shogo Muramatsu, Shunsuke Ono, "Proximal Gradient-Based Loop Unrolling with Interscale Thresholding," Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Dec. 2021
-
Genki Fujii, Yuta Yoshida, Shogo Muramatsu, Shunsuke Ono, Samuel Choi, Takeru Ota, Fumiaki Nin, Hiroshi Hibino, "OCT Volumetric Data Restoration with Latent Distribution of Refractive Index," Proc. of 2019 IEEE International Conference on Image Processing (ICIP), pp.764-768, Sept. 2019
-
Yuhei Kaneko, Shogo Muramatsu, Hiroyasu Yasuda, Kiyoshi Hayasaka, Yu Otake, Shunsuke Ono, Masahiro Yukawa, "Convolutional-Sparse-Coded Dynamic Mode Decompsition and Its Application to River State Estimation," Proc. of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1872-1876, May 2019
-
Shogo Muramatsu, Samuel Choi, Shunske Ono, Takeru Ota, Fumiaki Nin, Hiroshi Hibino, "OCT Volumetric Data Restoration via Primal-Dual Plug-and-Play Method," Proc. of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.801-805, Apr. 2018
-
Shogo Muramatsu, Kosuke Furuya and Naotaka Yuki, "Multidimensional Nonseparable Oversampled Lapped Transforms: Theory and Design," IEEE Trans. on Signal Process., Vol.65, No.5, pp.1251-1264, DOI:10.1109/TSP.2016.2633240, March 2017
-
Kota Horiuchi and Shogo Muramatsu, "Fast convolution technique for Non-separable Oversampled Lapped Transforms," Proc. of Asia Pacific Signal and Information Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Dec. 2016
-
Shogo Muramatsu, Masaki Ishii and Zhiyu Chen, "Efficient Parameter Optimization for Example-Based Design of Non-separable Oversampled Lapped Transform," Proc. of 2016 IEEE Intl. Conf. on Image Process. (ICIP), pp.3618-3622, Sept. 2016
-
Shogo Muramatsu, "Structured Dictionary Learning with 2-D Non-separable Oversampled Lapped Transform," Proc. of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2643-2647, May 2014
-
Kousuke Furuya, Shintaro Hara and Shogo Muramatsu, "Boundary Operation of 2-D non-separable Oversampled Lapped Transforms," Proc. of Asia Pacific Signal and Information Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Nov. 2013
-
Shogo Muramatsu and Natsuki Aizawa, "Image Restoration with 2-D Non-separable Oversampled Lapped Transforms," Proc. of 2013 IEEE International Conference on Image Process. (ICIP), pp.1051-1055, Sep. 2013
-
Shogo Muramatsu and Natsuki Aizawa, "Lattice Structures for 2-D Non-separable Oversampled Lapped Transforms," Proc. of 2013 IEEE International Conference on Acoustics, Speech and Signal Process. (ICASSP), pp.5632-5636, May 2013

被折叠的 条评论
为什么被折叠?



