[LeetCode 410] Split Array Largest Sum

博客围绕将非负整数数组分割成m个非空连续子数组,使这些子数组中最大和最小的问题展开。指出深搜会超时,应使用动态规划。定义dp[i][j]表示nums[0:j]数组分割i次后的最小和,并给出状态转移方程,还给出了运行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.

Note:
If n is the length of array, assume the following constraints are satisfied:

  • 1 ≤ n ≤ 1000
  • 1 ≤ m ≤ min(50, n)

Examples:

Input:nums = [7,2,5,10,8]  m = 2
Output:18
Explanation:
There are four ways to split nums into two subarrays.The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.

分析

这道题如果用深搜的话一定会超时的。所以只能使用动态规划。动态规划怎么确定数组的含义就比较重要了。

我们使用dp[i][j]表示nums[0:j]的数组被分割i 次后所得到的最小的sum。那么可以推导出:

dp[i][j] = min(max(dp[i-1][k], sum[k:m])), i <= k < j。

即我们计算i次分割的结果时,我们先去找i-1次分割的结果,然后计算i-1次分割的结果与sum[k:j]的最大值,最后遍历 i <= k < j时的最小值。

Code

class Solution {
public:
    int splitArray(vector<int>& nums, int m) {
        int len = nums.size();
        if (len == 0)
            return 0;
        
        vector<vector<long long>> dp(m, vector<long long>(len, INT_MAX));        
        dp[0][0] = nums[0];
        for (int i = 1; i < len; i ++)
        {
            dp[0][i] = dp[0][i-1] + nums[i];
        }
        
        for (int i = 1; i < m; i ++)
        {
            for (int j = i; j < len; j ++)
            {
                for (int k = i-1; k < j; k ++)
                {
                    dp[i][j] = min(dp[i][j], max(dp[i-1][k], dp[0][j] - dp[0][k]));
                }
            }
        }
        return dp[m-1][len-1];
                                   
    }
};

运行效率

Runtime: 132 ms, faster than 27.65% of C++ online submissions for Split Array Largest Sum.

Memory Usage: 9.2 MB, less than 28.31% of C++ online submissions for Split Array Largest Sum.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值