leetcode 410. Split Array Largest Sum

本文介绍了一种算法,用于将一个由非负整数组成的数组分成m个连续的非空子数组,并使这些子数组的最大和最小化。通过动态规划的方法,详细解释了如何有效地解决这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.

Note:
If n is the length of array, assume the following constraints are satisfied:

  • 1 ≤ n ≤ 1000
  • 1 ≤ m ≤ min(50, n)

 

Examples:

Input:
nums = [7,2,5,10,8]
m = 2

Output:
18

Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.
class Solution {
public:
    long splitArray(vector<int>& nums, int m) 
    {
        int n = nums.size();
        sum = vector<long>(n,0);
        sum[0] = nums[0];
        mem = vector<vector<long>>(n,vector<long>(m+1,INT_MAX));
        for(int i=1;i<n;i++)
        {
            sum[i] = sum[i-1] + nums[i];
        }
        return splitarray(nums,n,m);
    }
private:
    vector<long> sum;
    vector<vector<long>> mem;
    long  splitarray(vector<int>& num,int n ,int m)
    {
        for(int i=0;i<n;i++)
            for(int j=1;j<=i+1&&j<=m;j++)
                if(j==1) mem[i][j] = sum[i];
                else
                    for(int k=0;k<i;k++) mem[i][j] = min(mem[i][j],max(mem[k][j-1],sum[i]-sum[k])); 
        return mem[n-1][m];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值