1127. ZigZagging on a Tree (30)
Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences. And it is a simple standard routine to print the numbers in level-order. However, if you think the problem is too simple, then you are too naive. This time you are supposed to print the numbers in "zigzagging order" -- that is, starting from the root, print the numbers level-by-level, alternating between left to right and right to left. For example, for the following tree you must output: 1 11 5 8 17 12 20 15.

Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<= 30), the total number of nodes in the binary tree. The second line gives the inorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the zigzagging sequence of the tree in a line. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:8 12 11 20 17 1 15 8 5 12 20 17 11 15 8 5 1Sample Output:
1 11 5 8 17 12 20 15
#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <set>
#include <map>
#include <queue>
#include <vector>
using namespace std;
int N;
int in[35], post[35];
int len, maxdep;
map<int, int> ls, rs;
vector<int> G[35];
struct node {
int x, dep;
node() {}
node(int x, int dep) : x(x), dep(dep) {}
};
int build(int l, int r) {
if (l > r) {
return -1;
}
int root, i;
root = post[len--];
for (i = l; i <= r; i++) {
if (in[i] == root) {
break;
}
}
rs[root] = build(i + 1, r);
ls[root] = build(l, i - 1);
return root;
}
void bfs(int s) {
queue<node> q;
while (!q.empty()) {
q.pop();
}
q.push(node(s, 1));
for (int i = 0; i < 33; i++) G[i].clear();
maxdep = -1;
while(!q.empty()) {
node tn = q.front(); q.pop();
maxdep = max(maxdep, tn.dep);
G[tn.dep].push_back(tn.x);
if (ls[tn.x] != -1) {
q.push(node(ls[tn.x], tn.dep + 1));
}
if (rs[tn.x] != -1) {
q.push(node(rs[tn.x], tn.dep + 1));
}
}
}
void output() {
int cnt = 0;
for (int i = 1; i <= maxdep; i++) {
if (i % 2) {
for (int j = G[i].size() - 1; j >= 0; j--) {
printf(cnt++ == 0 ? "%d" : " %d", G[i][j]);
}
} else {
for (int j = 0; j < G[i].size(); j++) {
printf(cnt++ == 0 ? "%d" : " %d", G[i][j]);
}
}
}
puts("");
}
int main()
{
cin >> N;
for (int i = 1; i <= N; i++) {
scanf("%d", &in[i]);
}
for (int i = 1; i <= N; i++) {
scanf("%d", &post[i]);
}
len = N;
ls.clear();
rs.clear();
int root = build(1, N);
bfs(root);
output();
return 0;
}