hdu5904 LCIS dp

本文针对LCIS(最长连续递增子序列)问题提供了解决方案,通过两个序列寻找共同的最长连续递增子序列,并详细介绍了算法实现过程及代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LCIS

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 645    Accepted Submission(s): 300


Problem Description
Alex has two sequences  a1,a2,...,an  and  b1,b2,...,bm . He wants find a longest common subsequence that consists of consecutive values in increasing order.
 

Input
There are multiple test cases. The first line of input contains an integer  T , indicating the number of test cases. For each test case:

The first line contains two integers  n  and  m   (1n,m100000)  -- the length of two sequences. The second line contains  n  integers:  a1,a2,...,an   (1ai106) . The third line contains  n  integers:  b1,b2,...,bm   (1bi106) .

There are at most  1000  test cases and the sum of  n  and  m  does not exceed  2×106 .
 

Output
For each test case, output the length of longest common subsequence that consists of consecutive values in increasing order.
 

Sample Input
  
3 3 3 1 2 3 3 2 1 10 5 1 23 2 32 4 3 4 5 6 1 1 2 3 4 5 1 1 2 1
 

Sample Output
  
1 5 0


参考:http://www.cnblogs.com/dwtfukgv/p/5904509.html


看了看别人的题解,自己码一遍,感觉好简单……为什么自己就是做不出来……


a[x]为第一个序列中到x为止最长连续上升子序列长度,b[x]为第二个序列中到x为止最长的连续上升子序列长度,均包括x


#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 100000;

int T, n, m, x;
int a[maxn + 5], b[maxn + 5];

int main()
{
	cin >> T;
	while (T--) {
		scanf("%d%d", &n, &m);
		memset(a, 0, sizeof(a));
		memset(b, 0, sizeof(b));
		for (int i = 0; i < n; i++) {
			scanf("%d", &x);
			a[x] = max(a[x], a[x - 1] + 1); //因为是一个方向扫,所以max可以不用写也对
		}
		int ans = -1;
		for (int i = 0; i < m; i++) {
			scanf("%d", &x);
			b[x] = max(b[x], b[x - 1] + 1);
			//min相当于取交集,例如1, 2, 3   a[3] = 3;  2, 3  b[3] = 2,那么肯定取min, 即2, 3
			ans = max(ans, min(a[x], b[x]));
		}
		printf("%d\n", ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值