so easy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 161 Accepted Submission(s): 130
Problem Description
Given an array with
your task is: calculate xor of all f(s) , here s⊆S .
n
integers, assume
f(S)
as the result of executing xor operation among all the elements of set
S
. e.g. if
S={1,2,3}
then
f(S)=0
.
your task is: calculate xor of all f(s) , here s⊆S .
Input
This problem has multi test cases. First line contains a single integer
T(T≤20)
which represents the number of test cases.
For each test case, the first line contains a single integer number n(1≤n≤1,000) that represents the size of the given set. then the following line consists of n different integer numbers indicate elements( ≤109 ) of the given set.
For each test case, the first line contains a single integer number n(1≤n≤1,000) that represents the size of the given set. then the following line consists of n different integer numbers indicate elements( ≤109 ) of the given set.
Output
For each test case, print a single integer as the answer.
Sample Input
1 3 1 2 3
Sample Output
0 In the sample,$S = \{1, 2, 3\}$, subsets of $S$ are: $\varnothing$, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
Source
因为偶数个相同的数异或得0,奇数个相同的数异或得自身。
发现一个规律,每个元素在所有子集中出现的次数都一样,而且都是2^(n-1),比如样例
是C(1, 1) + C(2, 1) + C(2, 2) = 2 ^ (3 - 1)
当n = 4的时候再推一推发现为C(1, 1) + C(3, 1) + C(3, 2) +C(3, 3) = 2^(4 - 1) = 8
其实就是个杨辉三角的关系
1 2 ^ (1 - 1) = 1
1 1 2^(2 -1) = 2
1 2 1 2^(3 - 1) = 4
1 3 3 1 2 ^ (4 - 1) = 8
.....................
当n为1的时候,也就是只有一个元素的时候输出自身,其他情况所有元素在所有子集中出现的次数都是偶数,最后异或的结果肯定为0
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
long long a[1005];
int main()
{
int T, n;
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%I64d", &a[i]);
}
if (n == 1) {
printf("%I64d\n", a[0]);
}
else {
puts("0");
}
}
return 0;
}