Multiplication Puzzle

本文介绍了一种基于卡片取值的谜题游戏算法,玩家的目标是从一排含有正整数的卡片中,按照一定顺序取出卡片,使得最终得分最小。通过动态规划方法实现了这一过程,并给出了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row.

The goal is to take cards in such order as to minimize the total number of scored points.

For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring
10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be
1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.
Input
The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.
Output
Output must contain a single integer - the minimal score.
Sample Input
6
10 1 50 50 20 5
Sample Output
3650


题意:从一堆放好的卡片中取一个卡片(不能取开头和结尾的卡片),每次取出一个卡片的时候,就计算一个值:该卡片上的数字和他左右卡片的数字的乘积。重复这个操作直到只剩下两个卡片,将所有得到的值加起来。求这个值的最小值是多少。

题意:dp[i][j]表示从第i张到第j张的最小的值,状态转移方程dp[i][j] = min(dp[i][j],dp[i][k] + dp[k][j] + a[i] * a[k] * a[j]),k表示最后一个取走的卡牌,i<k<j。

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
using namespace std;

const int maxn = 105;
const int inf = 0x3f3f3f3f;

int main()
{
    int n;
    int a[maxn];
    int dp[maxn][maxn];
    while(scanf("%d",&n) != EOF)
    {
        memset(dp,0,sizeof(dp));
        for(int i = 1;i <= n;i++)
        {
            scanf("%d",&a[i]);
        }
        for(int l = 2;l <= n - 1;l++)
        {
            for(int i = 1;i + l <= n;i++)
            {
                int j = i + l;
                dp[i][j] = inf;
                for(int k = i + 1;k <= j - 1;k++)
                {
                    dp[i][j] = min(dp[i][j],dp[i][k] + dp[k][j] + a[i] * a[j] * a[k]);
                }
            }
        }
        printf("%d\n",dp[1][n]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值