WEEK 1 -- What's Machine Learning

本文介绍了机器学习的两种定义,并通过玩跳棋的例子解释了如何衡量机器学习的效果。此外,还探讨了机器学习的两大分类:监督学习和非监督学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

What is Machine Learning?


Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.


Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."


Example: playing checkers.


E = the experience of playing many games of checkers


T = the task of playing checkers.


P = the probability that the program will win the next game.


In general, any machine learning problem can be assigned to one of two broad classifications:


Supervised learning and Unsupervised learning.


总结:

机器学习的定义(不存在一个明确的定义):

①在没给出明确的编程的情况下,让计算机自己学习的领域 -- Arthur Samuel

②一个程序能从经验E中学习,解决任务T,达到性能度量值P,当且仅当,有了经验E之后,经过P的判断,提升程序处理T的性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值